it's known that when the number of variables (p) is larger than the number of samples (n) the least square estimator is not defined.
In sklearn I receive this values:
In [30]: lm = LinearRegression().fit(xx,y_train)
In [31]: lm.coef_
Out[31]:
array([[ 0.20092363, -0.14378298, -0.33504391, ..., -0.40695124,
0.08619906, -0.08108713]])
In [32]: xx.shape
Out[32]: (1097, 3419)
Call [30] should return an error. How does sklearn work when p>n like in this case?
EDIT: It seems that the matrix is filled with some values
if n > m:
# need to extend b matrix as it will be filled with
# a larger solution matrix
if len(b1.shape) == 2:
b2 = np.zeros((n, nrhs), dtype=gelss.dtype)
b2[:m,:] = b1
else:
b2 = np.zeros(n, dtype=gelss.dtype)
b2[:m] = b1
b1 = b2
When the linear system is underdetermined, then the sklearn.linear_model.LinearRegression
finds the minimum L2
norm solution, i.e.
argmin_w l2_norm(w) subject to Xw = y
This is always well defined and obtainable by applying the pseudoinverse of X
to y
, i.e.
w = np.linalg.pinv(X).dot(y)
The specific implementation of scipy.linalg.lstsq
, which is used by LinearRegression
uses get_lapack_funcs(('gelss',), ...
which is precisely a solver that finds the minimum norm solution via singular value decomposition (provided by LAPACK).
Check out this example
import numpy as np
rng = np.random.RandomState(42)
X = rng.randn(5, 10)
y = rng.randn(5)
from sklearn.linear_model import LinearRegression
lr = LinearRegression(fit_intercept=False)
coef1 = lr.fit(X, y).coef_
coef2 = np.linalg.pinv(X).dot(y)
print(coef1)
print(coef2)
And you will see that coef1 == coef2
. (Note that fit_intercept=False
is specified in the constructor of the sklearn estimator, because otherwise it would subtract the mean of each feature before fitting the model, yielding different coefficients)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With