I found example in c++: http://docs.opencv.org/3.0-beta/doc/tutorials/features2d/akaze_matching/akaze_matching.html
But there isn't any example in python showing how to use this feature detector (also couldn't find anything more in documentation about AKAZE there is ORB SIFT, SURF, etc but not what I'm looking for) http://docs.opencv.org/3.1.0/db/d27/tutorial_py_table_of_contents_feature2d.html#gsc.tab=0
Can someone could share or show me where I can find information how to match images in python with akaze?
To split the color channels into BGR , we can use cv2. split() then use cv2. calcHist() to extract the color features with a histogram.
Gabor Filters are used to extract the texture feature from an image whereas Zernike Moments can be used to extract the shape feature.
I am not sure on where to find it, the way I made it work was through this function which used the Brute Force matcher:
def kaze_match(im1_path, im2_path):
# load the image and convert it to grayscale
im1 = cv2.imread(im1_path)
im2 = cv2.imread(im2_path)
gray1 = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY)
# initialize the AKAZE descriptor, then detect keypoints and extract
# local invariant descriptors from the image
detector = cv2.AKAZE_create()
(kps1, descs1) = detector.detectAndCompute(gray1, None)
(kps2, descs2) = detector.detectAndCompute(gray2, None)
print("keypoints: {}, descriptors: {}".format(len(kps1), descs1.shape))
print("keypoints: {}, descriptors: {}".format(len(kps2), descs2.shape))
# Match the features
bf = cv2.BFMatcher(cv2.NORM_HAMMING)
matches = bf.knnMatch(descs1,descs2, k=2) # typo fixed
# Apply ratio test
good = []
for m,n in matches:
if m.distance < 0.9*n.distance:
good.append([m])
# cv2.drawMatchesKnn expects list of lists as matches.
im3 = cv2.drawMatchesKnn(im1, kps1, im2, kps2, good[1:20], None, flags=2)
cv2.imshow("AKAZE matching", im3)
cv2.waitKey(0)
Remember that the feature vectors are binary vectors. Therefore, the similarity is based on the Hamming distance, rather than the commonly used L2 norm or Euclidean distance if you will.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With