>>> import numpy as np
>>> A = np.array([[1,2,3,4],[5,6,7,8]])
>>> A
array([[1, 2, 3, 4],
[5, 6, 7, 8]])
>>> A[:,2] # returns the third columm
array([3, 7])
See also: "numpy.arange" and "reshape" to allocate memory
Example: (Allocating a array with shaping of matrix (3x4))
nrows = 3
ncols = 4
my_array = numpy.arange(nrows*ncols, dtype='double')
my_array = my_array.reshape(nrows, ncols)
Could it be that you're using a NumPy array? Python has the array module, but that does not support multi-dimensional arrays. Normal Python lists are single-dimensional too.
However, if you have a simple two-dimensional list like this:
A = [[1,2,3,4],
[5,6,7,8]]
then you can extract a column like this:
def column(matrix, i):
return [row[i] for row in matrix]
Extracting the second column (index 1):
>>> column(A, 1)
[2, 6]
Or alternatively, simply:
>>> [row[1] for row in A]
[2, 6]
If you have an array like
a = [[1, 2], [2, 3], [3, 4]]
Then you extract the first column like that:
[row[0] for row in a]
So the result looks like this:
[1, 2, 3]
check it out!
a = [[1, 2], [2, 3], [3, 4]]
a2 = zip(*a)
a2[0]
it is the same thing as above except somehow it is neater the zip does the work but requires single arrays as arguments, the *a syntax unpacks the multidimensional array into single array arguments
>>> x = arange(20).reshape(4,5)
>>> x array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])
if you want the second column you can use
>>> x[:, 1]
array([ 1, 6, 11, 16])
def get_col(arr, col):
return map(lambda x : x[col], arr)
a = [[1,2,3,4], [5,6,7,8], [9,10,11,12],[13,14,15,16]]
print get_col(a, 3)
map function in Python is another way to go.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With