Sorry if this is too vague. I was recently reading about python's list.sort() method and read that it was written in C for performance reasons.
I'm assuming that the python code just passes a list to the C code and the C code passes a list back, but how does the python code know where to pass it or that C gave it the correct data type, and how does the C code know what data type it was given?
Compilers convert one programming language into another. Usually, compilers are used to convert code so the machine can understand it. If we want it to be human-readable, we need a subset of compilers called transpilers. Transpilers also convert code however the output is generally understandable by a human.
Over a third of programming language were developed in English speaking countries. But some of the well-known, highly-used coding languages were developed in non-English speaking countries e.g. Switzerland (PASCAL), Denmark (PHP), Japan (Ruby), Brazil (Lua), and The Netherlands (Python).
You can run almost any language on the shell.
Programming languages work together by being compiled or interpreted. Essentially this means using some sort of element to change one language into another or allowing it to be understood by a different language.
Python can be extended in C/C++ (more info here)
It basically means that you can wrap a C module like this
#include "Python.h"
// Static function returning a PyObject pointer
static PyObject *
keywdarg_parrot(PyObject *self, PyObject *args, PyObject *keywds)
// takes self, args and kwargs.
{
int voltage;
// No such thing as strings here. Its a tough life.
char *state = "a stiff";
char *action = "voom";
char *type = "Norwegian Blue";
// Possible keywords
static char *kwlist[] = {"voltage", "state", "action", "type", NULL};
// unpack arguments
if (!PyArg_ParseTupleAndKeywords(args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;
// print to stdout
printf("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);
printf("-- Lovely plumage, the %s -- It's %s!\n", type, state);
// Reference count some None.
Py_INCREF(Py_None);
// return some none.
return Py_None;
}
// Static PyMethodDef
static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg_parrot() takes
* three.
*/
// Declare the parrot function, say what it takes and give it a doc string.
{"parrot", (PyCFunction)keywdarg_parrot, METH_VARARGS | METH_KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, 0, NULL} /* sentinel */
};
And using the Python header files it will define and understand entry points and return locations in the C/C++ code.
I can't speak to Python/C interaction directly, but I can give some background to how these sorts of things work in general.
On a particular platform or implementation, there is a calling convention that specifies how parameters are passed to subroutines and how values are returned to the caller. Compilers and interpreters that target that platform or implementation generate code to conform to that convention, so that subroutines/modules/whatever written in different languages can communicate with each other.
In my assembly class, we had an assignment where we had to write a program using VAX assembler, C, and Pascal (this was in the mid-Cretaceous1980s). The driver was in one of C or Pascal (can't remember which anymore), which called the assembly routine, which called the other routine (which was written in whichever language the driver wasn't). Our assembly code had to pop and push parameters from the stack based on the VMS calling convention.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With