I have a Windows certification authority that I am using to issue client authentication certificates via .net / c#. I have been able to successfully get it to issue certificates programmatically by calling the certification authority's API through COM. I issue a new certificate when I set up a client.
At runtime, these clients attach the certificates to requests to my server. How can I verify programmatically that an X509Certificate2 was signed by the root certificate of my certificate authority (and reject certificates signed by any other source)?
To verify a certificate, a browser will obtain a sequence of certificates, each one having signed the next certificate in the sequence, connecting the signing CA's root to the server's certificate. This sequence of certificates is called a certification path.
Essentially, a certificate authority, which issues the certificate, investigates you and/or your organization to validate your legitimacy. Then they vouch for you by issuing the certificate. In all, there are three levels of validation: Domain Validation (DV) Organization Validation (OV)
A certificate is self-signed if the subject and issuer match. A certificate is signed by a Certificate Authority (CA) if they are different. To validate a CA-signed certificate, you also need a CA certificate. The Details tab (not shown here) sections can be expanded to show each field in a certificate.
I've done this a lot. Here's some easy code you can use.
The part in the if (!isChainValid)
block is to make a pretty error message. You don't have to use that if you don't want, but you should throw an error if the chain cannot be built. The chain elements are necessary to check for your root.
X509Certificate2 authority = GetAuthorityCertificate();
X509Certificate2 certificateToValidate = GetCertificateToValidate();
X509Chain chain = new X509Chain();
chain.ChainPolicy.RevocationMode = X509RevocationMode.NoCheck;
chain.ChainPolicy.RevocationFlag = X509RevocationFlag.ExcludeRoot;
chain.ChainPolicy.VerificationFlags = X509VerificationFlags.AllowUnknownCertificateAuthority;
chain.ChainPolicy.VerificationTime = DateTime.Now;
chain.ChainPolicy.UrlRetrievalTimeout = new TimeSpan(0, 0, 0);
// This part is very important. You're adding your known root here.
// It doesn't have to be in the computer store at all. Neither certificates do.
chain.ChainPolicy.ExtraStore.Add(authority);
bool isChainValid = chain.Build(certificateToValidate);
if (!isChainValid)
{
string[] errors = chain.ChainStatus
.Select(x => String.Format("{0} ({1})", x.StatusInformation.Trim(), x.Status))
.ToArray();
string certificateErrorsString = "Unknown errors.";
if (errors != null && errors.Length > 0)
{
certificateErrorsString = String.Join(", ", errors);
}
throw new Exception("Trust chain did not complete to the known authority anchor. Errors: " + certificateErrorsString);
}
// This piece makes sure it actually matches your known root
var valid = chain.ChainElements
.Cast<X509ChainElement>()
.Any(x => x.Certificate.Thumbprint == authority.Thumbprint);
if (!valid)
{
throw new Exception("Trust chain did not complete to the known authority anchor. Thumbprints did not match.");
}
You can also use the built in method Verify()
for X509Certificate2
.
X509Certificate2 certificateToValidate = GetCertificateToValidate();
bool valid = certificateToValidate.Verify()
https://msdn.microsoft.com/en-us/library/system.security.cryptography.x509certificates.x509certificate2.verify.aspx
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With