Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How do I use model.evals_result() in Xgboost if I am using GridsearchCV?

I am using xgboost regressor and I had a question about how to use model.evals_result() if I am using GridsearchCV

I know if I don't use Gridsearch I can get what I want using the below code

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.33, random_state=1,shuffle=False)

evals_result = {}
eval_s = [(X_train, y_train), (X_test, y_test)]

gbm = xgb.XGBRegressor()
gbm.fit(X_train, y_train,eval_metric=["rmse"],eval_set=eval_s)

results = gbm.evals_result()

ButI am not able to get evals_result() if I am using the GridsearchCV in my code (see below).

anyone clues?

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.33, random_state=1,shuffle=False)

gbm_param_grid = {'learning_rate': [.01, .1, .5, .9],
                          'n_estimators': [200, 300],
                          'subsample': [0.3, 0.5, 0.9]
                          }

fit_params = {"early_stopping_rounds": 100,
                      "eval_metric": "mae",
                      "eval_set": [(X_train, y_train), (X_test, y_test)]}

evals_result = {}
eval_s = [(X_train, y_train), (X_test, y_test)]

gbm = xgb.XGBRegressor()
tscv = TimeSeriesSplit(n_splits=2)
xgb_Gridcv = GridSearchCV(estimator=gbm, param_grid=gbm_param_grid, cv=tscv,refit = True, verbose=0)

xgb_Gridcv.fit(X_train, y_train,eval_metric=["rmse"],eval_set=eval_s)
        ypred = xgb_Gridcv.predict(X_test) 

Now when I run results = gbm.evals_result() I get this error

Traceback (most recent call last):
  File "/Users/prasadkamath/.conda/envs/Pk/lib/python3.5/site-packages/IPython/core/interactiveshell.py", line 2961, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-11-95ef57081806>", line 1, in <module>
    results = gbm.evals_result()
  File "/Users/prasadkamath/.conda/envs/Pk/lib/python3.5/site-packages/xgboost/sklearn.py", line 401, in evals_result
    if self.evals_result_:
AttributeError: 'XGBRegressor' object has no attribute 'evals_result_'
like image 896
TRex Avatar asked Sep 19 '25 05:09

TRex


1 Answers

In general you can access the dictionary evals_result directly, as opposed to accessing a method of the model, e.g. xgb_model.evals_result(). For example:

eval_s = [(X_train, y_train), (X_test, y_test)]
evals_result = {}
xgb_model = xgb.train(param, 
                      train_orig_data_dmat, 
                      num_boost_round=100,
                      evals=eval_s,
                      early_stopping_rounds=10,
                      evals_result=evals_result)
print(evals_result)

will print out error for train and test respectively, together with any evaluation metrics you define. Here is another, more detailed reference: https://github.com/dmlc/xgboost/blob/master/demo/guide-python/evals_result.py

like image 61
mellifluous Avatar answered Sep 20 '25 19:09

mellifluous