I can get frames from my webcam using OpenCV in Python. The camshift example is close to what I want, but I don't want human intervention to define the object. I want to get the center point of the total pixels that have changed over the course of several frame, i.e. the center of the moving object.
Steps for Motion Detection OpenCV PythonRead two frames from the video source. Find Out the Difference between the next frame and the previous frame. Apply Image manipulations like Blurring, Thresholding, finding out contours, etc. Finding Area of Contours to detect Motion.
I've got some working code translated from the C version of code found in the blog post Motion Detection using OpenCV:
#!/usr/bin/env python
import cv
class Target:
def __init__(self):
self.capture = cv.CaptureFromCAM(0)
cv.NamedWindow("Target", 1)
def run(self):
# Capture first frame to get size
frame = cv.QueryFrame(self.capture)
frame_size = cv.GetSize(frame)
color_image = cv.CreateImage(cv.GetSize(frame), 8, 3)
grey_image = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_8U, 1)
moving_average = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_32F, 3)
first = True
while True:
closest_to_left = cv.GetSize(frame)[0]
closest_to_right = cv.GetSize(frame)[1]
color_image = cv.QueryFrame(self.capture)
# Smooth to get rid of false positives
cv.Smooth(color_image, color_image, cv.CV_GAUSSIAN, 3, 0)
if first:
difference = cv.CloneImage(color_image)
temp = cv.CloneImage(color_image)
cv.ConvertScale(color_image, moving_average, 1.0, 0.0)
first = False
else:
cv.RunningAvg(color_image, moving_average, 0.020, None)
# Convert the scale of the moving average.
cv.ConvertScale(moving_average, temp, 1.0, 0.0)
# Minus the current frame from the moving average.
cv.AbsDiff(color_image, temp, difference)
# Convert the image to grayscale.
cv.CvtColor(difference, grey_image, cv.CV_RGB2GRAY)
# Convert the image to black and white.
cv.Threshold(grey_image, grey_image, 70, 255, cv.CV_THRESH_BINARY)
# Dilate and erode to get people blobs
cv.Dilate(grey_image, grey_image, None, 18)
cv.Erode(grey_image, grey_image, None, 10)
storage = cv.CreateMemStorage(0)
contour = cv.FindContours(grey_image, storage, cv.CV_RETR_CCOMP, cv.CV_CHAIN_APPROX_SIMPLE)
points = []
while contour:
bound_rect = cv.BoundingRect(list(contour))
contour = contour.h_next()
pt1 = (bound_rect[0], bound_rect[1])
pt2 = (bound_rect[0] + bound_rect[2], bound_rect[1] + bound_rect[3])
points.append(pt1)
points.append(pt2)
cv.Rectangle(color_image, pt1, pt2, cv.CV_RGB(255,0,0), 1)
if len(points):
center_point = reduce(lambda a, b: ((a[0] + b[0]) / 2, (a[1] + b[1]) / 2), points)
cv.Circle(color_image, center_point, 40, cv.CV_RGB(255, 255, 255), 1)
cv.Circle(color_image, center_point, 30, cv.CV_RGB(255, 100, 0), 1)
cv.Circle(color_image, center_point, 20, cv.CV_RGB(255, 255, 255), 1)
cv.Circle(color_image, center_point, 10, cv.CV_RGB(255, 100, 0), 1)
cv.ShowImage("Target", color_image)
# Listen for ESC key
c = cv.WaitKey(7) % 0x100
if c == 27:
break
if __name__=="__main__":
t = Target()
t.run()
See the forum post Motion tracking using OpenCV.
I believe you are capable of reading and translating the source code to Python, right?
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With