I would like to have a chart with the temperatures for the following days on my website, and the Global Forecasting System meets my needs the most. How do I plot the GRIB2 data in matplotlib and create a PNG image from the plot?
I've spend hours of searching on the internet, asking people who do know how to do this (they where not helpfull at all) and I don't know where to start. GFS data can be found here: ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/ If possible, I'd like it to be lightweight and without loosing too much server space.
When you think lightweight about data usage and storage, you may consider to use other data forms than GRIB. GRIB-files usually contain worldwide data, which is pretty useless when you only want to plot for a specific domain.
I can strongly recommend to use data from the NOAA-NCEP opendap data server. You can gain data from this server using netCDF4. Unfortunately, this server is known to be unstable at some times which may causes delays in refreshing runs and/or malformed datasets. Although, in 95% of the time, I have acces to all the data I need.
Note: This data server may be slow due to high trafficking after a release of a new run. Acces to the data server can be found here: http://nomads.ncdc.noaa.gov/data.php?name=access#hires_weather_datasets
Plotting data is pretty easy with Matplotlib and Basemap toolkits. Some examples, including usage of GFS-datasets, can be found here: http://matplotlib.org/basemap/users/examples.html
Basically, there are 2 steps:
install: http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/compile_questions.html
tricks: http://www.ftp.cpc.ncep.noaa.gov/wd51we/wgrib2/tricks.wgrib2
For example, extract temperature and humidity:
wgrib2 test.grb2 -s | egrep '(:RH:2 m above ground:|:TMP:2 m above ground:)'|wgrib2 -i test.grb2 -netcdf test.nc
use Python libraries to process NetCDF files, example code may look like this:
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
% matplotlib inline
from netCDF4 import Dataset
from mpl_toolkits.basemap import Basemap
from pyproj import Proj
import matplotlib.cm as cm
import datetime
file = "test.nc"
rootgrp = Dataset(file, "r")
x = rootgrp['longitude'][:] # 0-359, step = 1
y = rootgrp['latitude'][:] # -90~90, step =1
tmp = rootgrp['TMP_2maboveground'][:][0] # shape(181,360)
dt = datetime.datetime(1970,1,1) + datetime.timedelta(seconds = rootgrp['time'][0])
fig = plt.figure(dpi=150)
m = Basemap(projection='mill',lat_ts=10,llcrnrlon=x.min(),
urcrnrlon=x.max(),llcrnrlat=y.min(),urcrnrlat=y.max(), resolution='c')
xx, yy = m(*np.meshgrid(x,y))
m.pcolormesh(xx,yy,tmp-273.15,shading='flat',cmap=plt.cm.jet)
m.colorbar(location='right')
m.drawcoastlines()
m.drawparallels(np.arange(-90.,120.,30.), labels=[1,0,0,0], fontsize=10)
m.drawmeridians(np.arange(0.,360.,60.), labels=[0,0,0,1], fontsize=10)
plt.title("{}, GFS, Temperature (C) ".format(dt.strftime('%Y-%m-%d %H:%M UTC')))
plt.show()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With