I have a dataframe with 50 columns. I want to replace NAs with 0 in 10 columns.
What's the simplest, most readable way of doing this?
I was hoping for something like:
cols = ['a', 'b', 'c', 'd']
df[cols].fillna(0, inplace=True)
But that gives me ValueError: Must pass DataFrame with boolean values only.
I found this answer, but it's rather hard to understand.
you can use update():
In [145]: df
Out[145]:
    a   b   c  d  e
0 NaN NaN NaN  3  8
1 NaN NaN NaN  8  7
2 NaN NaN NaN  2  8
3 NaN NaN NaN  7  4
4 NaN NaN NaN  4  9
5 NaN NaN NaN  1  9
6 NaN NaN NaN  7  7
7 NaN NaN NaN  6  5
8 NaN NaN NaN  0  0
9 NaN NaN NaN  9  5
In [146]: df.update(df[['a','b','c']].fillna(0))
In [147]: df
Out[147]:
     a    b    c  d  e
0  0.0  0.0  0.0  3  8
1  0.0  0.0  0.0  8  7
2  0.0  0.0  0.0  2  8
3  0.0  0.0  0.0  7  4
4  0.0  0.0  0.0  4  9
5  0.0  0.0  0.0  1  9
6  0.0  0.0  0.0  7  7
7  0.0  0.0  0.0  6  5
8  0.0  0.0  0.0  0  0
9  0.0  0.0  0.0  9  5
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With