My data frames (pandas's structure) looks like above
Now I want to make boxplot for each feature on separate canvas. The separation condition is the first column. I have similar plot for histogram (code below) but I can't make working version for the boxplot.
hist_params = {'normed': True, 'bins': 60, 'alpha': 0.4}
# create the figure
fig = plt.figure(figsize=(16, 25))
for n, feature in enumerate(features):
# add sub plot on our figure
ax = fig.add_subplot(features.shape[1] // 5 + 1, 6, n + 1)
# define range for histograms by cutting 1% of data from both ends
min_value, max_value = numpy.percentile(data[feature], [1, 99])
ax.hist(data.ix[data.is_true_seed.values == 0, feature].values, range=(min_value, max_value),
label='ghost', **hist_params)
ax.hist(data.ix[data.is_true_seed.values == 1, feature].values, range=(min_value, max_value),
label='true', **hist_params)
ax.legend(loc='best')
ax.set_title(feature)
Above code produce such output as (attached only part of it):
DataFrame.boxplot()
automates this rather well:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame({'is_true_seed': np.random.choice([True, False], 10),
'col1': np.random.normal(size=10),
'col2': np.random.normal(size=10),
'col3': np.random.normal(size=10)})
is_true_seed col1 col2 col3
0 False -0.990041 -0.561413 -0.512582
1 False 0.825099 0.827453 -0.366211
2 True 0.083442 -1.199540 0.345792
3 True 0.065715 1.560029 -0.324501
4 True -1.699770 -0.270820 -1.380125
ax = df.boxplot(['col1', 'col2', 'col3'], 'is_true_seed', figsize=(10, 10))
The first argument tells pandas which columns to plot, the second which column to group by (what you call the separation condition), and the third on which axes to draw.
Listing all columns but the one you want to group by can get tedious, but you can avoid it by omitting that first argument. You then have to explicitly name the other two:
ax = df.boxplot(by='is_true_seed', figsize=(10, 10))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With