THe following code i have below produce the regular tensorflow model but when i try to convert it to tensorflow lite it doesn't work, i followed the following documentations.
https://www.tensorflow.org/tutorials/estimator/linear1 https://www.tensorflow.org/lite/guide/get_started
export_dir = "tmp"
serving_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
tf.feature_column.make_parse_example_spec(feat_cols))
estimator.export_saved_model(export_dir, serving_input_fn)
# Convert the model.
converter = tf.lite.TFLiteConverter.from_saved_model("tmp/1571728920/saved_model.pb")
tflite_model = converter.convert()
Error Message
Traceback (most recent call last):
File "C:/Users/Dacorie Smith/PycharmProjects/JamaicaClassOneNotifableModels/ClassOneModels.py", line 208, in <module>
tflite_model = converter.convert()
File "C:\Users\Dacorie Smith\PycharmProjects\JamaicaClassOneNotifableModels\venv\lib\site-packages\tensorflow_core\lite\python\lite.py", line 400, in convert
raise ValueError("This converter can only convert a single "
ValueError: This converter can only convert a single ConcreteFunction. Converting multiple functions is under development.
Extract from Documentation
TensorFlow Lite converter The TensorFlow Lite converter is a tool available as a Python API that converts trained TensorFlow models into the TensorFlow Lite format. It can also introduce optimizations, which are covered in section 4, Optimize your model.
The following example shows a TensorFlow SavedModel being converted into the TensorFlow Lite format:
import tensorflow as tf
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model)
Try to use a concrete function:
export_dir = "tmp"
serving_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
tf.feature_column.make_parse_example_spec(feat_cols))
estimator.export_saved_model(export_dir, serving_input_fn)
# Convert the model.
saved_model_obj = tf.saved_model.load(export_dir="tmp/1571728920/")
concrete_func = saved_model_obj.signatures['serving_default']
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
# print(saved_model_obj.signatures.keys())
# converter.optimizations = [tf.lite.Optimize.DEFAULT]
# converter.experimental_new_converter = True
tflite_model = converter.convert()
serving_default
is the default key for signatures in a SavedModels.
If not working try to uncomment converter.experimental_new_converter = True
and the two lines above it.
Short explanation
Based on Concrete functions guide
Eager execution in TensorFlow 2 evaluates operations immediately, without building graphs. To save the model you need graph/s which is wrapped in a python callables: a concrete functions.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With