I have a list of correlations generated from the text file with that form:
(first two values indicate between which points is the correlation)
2 1 -0.798399811877855E-01
3 1 0.357718108972297E+00
3 2 -0.406142457763738E+00
4 1 0.288467030571132E+00
4 2 -0.129115034405361E+00
4 3 0.156739504479856E+00
5 1 -0.756332254716083E-01
5 2 0.479036971438800E+00
5 3 -0.377545460300584E+00
5 4 -0.265467953118191E+00
6 1 0.909003414436468E-01
6 2 -0.363568902645620E+00
6 3 0.482042347959232E+00
6 4 0.292931692897587E+00
6 5 -0.739868576924150E+00
I already have another list with standard deviations associated with all of the points. How do I combine these two in numpy/scipy to create a covariance matrix?
It needs to be a very efficient method since there are 300 points, so ~ 50 000 correlations.
Assuming that this table is named df
and that the first column is labeled A
and the second is B
with the correlation value labeled Correlation
:
df2 = df.pivot(index='A', columns='B', values='Correlation')
>>> df2
B 1 2 3 4 5
A
2 -0.0798 NaN NaN NaN NaN
3 0.3580 -0.406 NaN NaN NaN
4 0.2880 -0.129 0.157 NaN NaN
5 -0.0756 0.479 -0.378 -0.265 NaN
6 0.0909 -0.364 0.482 0.293 -0.74
To convert this into a symmetrical square matrix with ones in the diagonal:
# Get a unique list of all items in rows and columns.
items = list(df2)
items.extend(list(df2.index))
items = list(set(items))
# Create square symmetric correlation matrix
corr = df2.values.tolist()
corr.insert(0, [np.nan] * len(corr))
corr = pd.DataFrame(corr)
corr[len(corr) - 1] = [np.nan] * len(corr)
for i in range(len(corr)):
corr.iat[i, i] = 1. # Set diagonal to 1.00
corr.iloc[i, i:] = corr.iloc[i:, i].values # Flip matrix.
# Rename rows and columns.
corr.index = items
corr.columns = items
>>> corr
1 2 3 4 5 6
1 1.0000 -0.0798 0.358 0.288 -0.0756 0.0909
2 -0.0798 1.0000 -0.406 -0.129 0.4790 -0.3640
3 0.3580 -0.4060 1.000 0.157 -0.3780 0.4820
4 0.2880 -0.1290 0.157 1.000 -0.2650 0.2930
5 -0.0756 0.4790 -0.378 -0.265 1.0000 -0.7400
6 0.0909 -0.3640 0.482 0.293 -0.7400 1.0000
Do the same steps to your std dev data if it is not already in a matrix form.
Assuming this matrix is named df_std
, then you can get the covariance matrix as follows:
df_cov = corr.multiply(df_std.multiply(df_std.T.values))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With