I'm a little confused as to how they relate. From my class, my professor asked how to fit C1 continuous piecewise Hermite curves to x amount of points with automatically computed tangents. Can someone explain how this works?
Hermite spline is a method of representation of cubic curve with two endpoints and two tangent vectors at these endpoints.
Note that there are many approaches to represent the same curve- power basis (at^3+bt^2+ct+d), Bernstein polynomials (for Bezier curves) and so on.
Catmull-Rom spline is a method of construction of a cubic curve (C1 continuous, if some pieces used). Every Catmull-Rom segment is a Hermite spline. If we want to represent a Catmull-Rom spline for the P1-P2 segment of the (P0,P1,P2,P3) point sequence as a Hermite one, we just use P1 and P2 as endpoints, and V1 and V2 as tangent vectors, where
V1 = tau * (P2-P0)
V2 = tau * (P3-P1)
(good article here) and tau is parameter of tension (rigidness)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With