I found next example on sklearn docs site:
>>> measurements = [
...     {'city': 'Dubai', 'temperature': 33.},
...     {'city': 'London', 'temperature': 12.},
...     {'city': 'San Fransisco', 'temperature': 18.},
... ]
>>> from sklearn.feature_extraction import DictVectorizer
>>> vec = DictVectorizer()
>>> vec.fit_transform(measurements).toarray()
array([[  1.,   0.,   0.,  33.],
       [  0.,   1.,   0.,  12.],
       [  0.,   0.,   1.,  18.]])
>>> vec.get_feature_names()
['city=Dubai', 'city=London', 'city=San Fransisco', 'temperature']
And i need to vectorize dict that looks like:
>>> measurements = [
...     {'city': ['Dubai','London'], 'temperature': 33.},
...     {'city': ['London','San Fransisco'], 'temperature': 12.},
...     {'city': ['San Fransisco'], 'temperature': 18.},
... ]
to get next result:
array([[  1.,   1.,   0.,  33.],
       [  0.,   1.,   1.,  12.],
       [  0.,   0.,   1.,  18.]])
I mean the value of dict should be a list (or tuple etc).
Can i do this using DictVectorizer or in any other way?
Change the representation to
>>> measurements = [
...     {'city=Dubai': True, 'city=London': True, 'temperature': 33.},
...     {'city=London': True, 'city=San Fransisco': True, 'temperature': 12.},
...     {'city': 'San Fransisco', 'temperature': 18.},
... ]
Then the result is exactly as you expect:
>>> vec.fit_transform(measurements).toarray()
array([[  1.,   1.,   0.,  33.],
       [  0.,   1.,   1.,  12.],
       [  0.,   0.,   1.,  18.]])
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With