OS : Ubuntu 14.04LTS
Language : Python Anaconda 2.7 (keras, theano)
GPU : GTX980Ti
CUDA : CUDA 7.5
I wanna run keras python code on IPython Notebook by using my GPU(GTX980Ti)
But I can't find it.
I want to test below code. When I run it on to Ubuntu terminal, I command as below (It uses GPU well. It doesn't have any problem)
First I set the path like below
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
Second I run the code as below
THEANO_FLAGS='floatX=float32,device=gpu0,nvcc.fastmath=True' python myscript.py
And it runs well.
But when i run the code on pycharm(python IDE) or When I run it on Ipython Notebook, It doesn't use gpu. It only uses CPU
myscript.py code is as below.
from theano import function, config, shared, sandbox
import theano.tensor as T
import numpy
import time
vlen = 10 * 30 * 768 # 10 x #cores x # threads per core
iters = 1000
rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([], T.exp(x))
print(f.maker.fgraph.toposort())
t0 = time.time()
for i in xrange(iters):
r = f()
t1 = time.time()
print("Looping %d times took %f seconds" % (iters, t1 - t0))
print("Result is %s" % (r,))
if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):
print('Used the cpu')
else:
print('Used the gpu')
To solve it, I force the code use gpu as below (Insert two lines more on myscript.py)
import theano.sandbox.cuda
theano.sandbox.cuda.use("gpu0")
Then It generate the error like below
ERROR (theano.sandbox.cuda): nvcc compiler not found on $PATH. Check your nvcc installation and try again.
how to do it??? I spent two days..
And I surely did the way of using '.theanorc' file at home directory.
Jupyter Notebooks from the NGC catalog can run on GPU-powered on-prem systems, including NVIDIA DGX™, as well as on cloud instances.
I'm using theano on an ipython notebook making use of my system's GPU. This configuration seems to work fine on my system.(Macbook Pro with GTX 750M)
My ~/.theanorc file :
[global]
cnmem = True
floatX = float32
device = gpu0
Various environment variables (I use a virtual environment(macvnev):
echo $LD_LIBRARY_PATH
/opt/local/lib:
echo $PATH
/Developer/NVIDIA/CUDA-7.5/bin:/opt/local/bin:/opt/local/sbin:/Developer/NVIDIA/CUDA-7.0/bin:/Users/Ramana/projects/macvnev/bin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin
echo $DYLD_LIBRARY_PATH
/Developer/NVIDIA/CUDA-7.5/lib:/Developer/NVIDIA/CUDA-7.0/lib:
How I run ipython notebook (For me, the device is gpu0) :
$THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32 ipython notebook
Output of $nvcc -V
:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2015 NVIDIA Corporation
Built on Thu_Sep_24_00:26:39_CDT_2015
Cuda compilation tools, release 7.5, V7.5.19
From your post, probably you've set the $PATH variable wrong.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With