Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How can I use multiple dimensional polynomials with numpy.polynomial?

I'm able to use numpy.polynomial to fit terms to 1D polynomials like f(x) = 1 + x + x^2. How can I fit multidimensional polynomials, like f(x,y) = 1 + x + x^2 + y + yx + y x^2 + y^2 + y^2 x + y^2 x^2? It looks like numpy doesn't support multidimensional polynomials at all: is that the case? In my real application, I have 5 dimensions of input and I am interested in hermite polynomials. It looks like the polynomials in scipy.special are also only available for one dimension of inputs.

# One dimension of data can be fit
x = np.random.random(100)
y = np.sin(x)
params = np.polynomial.polynomial.polyfit(x, y, 6)
np.polynomial.polynomial.polyval([0, .2, .5, 1.5], params)

array([ -5.01799432e-08,   1.98669317e-01,   4.79425535e-01,
         9.97606096e-01])

# When I try two dimensions, it fails. 
x = np.random.random((100, 2))
y = np.sin(5 * x[:,0]) + .4 * np.sin(x[:,1])
params = np.polynomial.polynomial.polyvander2d(x, y, [6, 6])
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-13-5409f9a3e632> in <module>()
----> 1 params = np.polynomial.polynomial.polyvander2d(x, y, [6, 6])

/usr/local/lib/python2.7/site-packages/numpy/polynomial/polynomial.pyc in polyvander2d(x, y, deg)
   1201         raise ValueError("degrees must be non-negative integers")
   1202     degx, degy = ideg
-> 1203     x, y = np.array((x, y), copy=0) + 0.0
   1204 
   1205     vx = polyvander(x, degx)

ValueError: could not broadcast input array from shape (100,2) into shape (100)
like image 545
kilojoules Avatar asked Sep 12 '25 09:09

kilojoules


1 Answers

I got annoyed that there is no simple function for a 2d polynomial fit of any number of degrees so I made my own. Like the other answers it uses numpy lstsq to find the best coefficients.

import numpy as np
from scipy.linalg import lstsq
from scipy.special import binom

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D


def _get_coeff_idx(coeff):
    idx = np.indices(coeff.shape)
    idx = idx.T.swapaxes(0, 1).reshape((-1, 2))
    return idx


def _scale(x, y):
    # Normalize x and y to avoid huge numbers
    # Mean 0, Variation 1
    offset_x, offset_y = np.mean(x), np.mean(y)
    norm_x, norm_y = np.std(x), np.std(y)
    x = (x - offset_x) / norm_x
    y = (y - offset_y) / norm_y
    return x, y, (norm_x, norm_y), (offset_x, offset_y)


def _unscale(x, y, norm, offset):
    x = x * norm[0] + offset[0]
    y = y * norm[1] + offset[1]
    return x, y


def polyvander2d(x, y, degree):
    A = np.polynomial.polynomial.polyvander2d(x, y, degree)
    return A


def polyscale2d(coeff, scale_x, scale_y, copy=True):
    if copy:
        coeff = np.copy(coeff)
    idx = _get_coeff_idx(coeff)
    for k, (i, j) in enumerate(idx):
        coeff[i, j] /= scale_x ** i * scale_y ** j
    return coeff


def polyshift2d(coeff, offset_x, offset_y, copy=True):
    if copy:
        coeff = np.copy(coeff)
    idx = _get_coeff_idx(coeff)
    # Copy coeff because it changes during the loop
    coeff2 = np.copy(coeff)
    for k, m in idx:
        not_the_same = ~((idx[:, 0] == k) & (idx[:, 1] == m))
        above = (idx[:, 0] >= k) & (idx[:, 1] >= m) & not_the_same
        for i, j in idx[above]:
            b = binom(i, k) * binom(j, m)
            sign = (-1) ** ((i - k) + (j - m))
            offset = offset_x ** (i - k) * offset_y ** (j - m)
            coeff[k, m] += sign * b * coeff2[i, j] * offset
    return coeff


def plot2d(x, y, z, coeff):
    # regular grid covering the domain of the data
    if x.size > 500:
        choice = np.random.choice(x.size, size=500, replace=False)
    else:
        choice = slice(None, None, None)
    x, y, z = x[choice], y[choice], z[choice]
    X, Y = np.meshgrid(
        np.linspace(np.min(x), np.max(x), 20), np.linspace(np.min(y), np.max(y), 20)
    )
    Z = np.polynomial.polynomial.polyval2d(X, Y, coeff)
    fig = plt.figure()
    ax = fig.gca(projection="3d")
    ax.plot_surface(X, Y, Z, rstride=1, cstride=1, alpha=0.2)
    ax.scatter(x, y, z, c="r", s=50)
    plt.xlabel("X")
    plt.ylabel("Y")
    ax.set_zlabel("Z")
    plt.show()


def polyfit2d(x, y, z, degree=1, max_degree=None, scale=True, plot=False):
    """A simple 2D polynomial fit to data x, y, z
    The polynomial can be evaluated with numpy.polynomial.polynomial.polyval2d

    Parameters
    ----------
    x : array[n]
        x coordinates
    y : array[n]
        y coordinates
    z : array[n]
        data values
    degree : {int, 2-tuple}, optional
        degree of the polynomial fit in x and y direction (default: 1)
    max_degree : {int, None}, optional
        if given the maximum combined degree of the coefficients is limited to this value
    scale : bool, optional
        Wether to scale the input arrays x and y to mean 0 and variance 1, to avoid numerical overflows.
        Especially useful at higher degrees. (default: True)
    plot : bool, optional
        wether to plot the fitted surface and data (slow) (default: False)

    Returns
    -------
    coeff : array[degree+1, degree+1]
        the polynomial coefficients in numpy 2d format, i.e. coeff[i, j] for x**i * y**j
    """
    # Flatten input
    x = np.asarray(x).ravel()
    y = np.asarray(y).ravel()
    z = np.asarray(z).ravel()

    # Remove masked values
    mask = ~(np.ma.getmask(z) | np.ma.getmask(x) | np.ma.getmask(y))
    x, y, z = x[mask].ravel(), y[mask].ravel(), z[mask].ravel()

    # Scale coordinates to smaller values to avoid numerical problems at larger degrees
    if scale:
        x, y, norm, offset = _scale(x, y)

    if np.isscalar(degree):
        degree = (int(degree), int(degree))
    degree = [int(degree[0]), int(degree[1])]
    coeff = np.zeros((degree[0] + 1, degree[1] + 1))
    idx = _get_coeff_idx(coeff)

    # Calculate elements 1, x, y, x*y, x**2, y**2, ...
    A = polyvander2d(x, y, degree)

    # We only want the combinations with maximum order COMBINED power
    if max_degree is not None:
        mask = idx[:, 0] + idx[:, 1] <= int(max_degree)
        idx = idx[mask]
        A = A[:, mask]

    # Do the actual least squares fit
    C, *_ = lstsq(A, z)

    # Reorder coefficients into numpy compatible 2d array
    for k, (i, j) in enumerate(idx):
        coeff[i, j] = C[k]

    # Reverse the scaling
    if scale:
        coeff = polyscale2d(coeff, *norm, copy=False)
        coeff = polyshift2d(coeff, *offset, copy=False)

    if plot:
        if scale:
            x, y = _unscale(x, y, norm, offset)
        plot2d(x, y, z, coeff)

    return coeff


if __name__ == "__main__":
    n = 100
    x, y = np.meshgrid(np.arange(n), np.arange(n))
    z = x ** 2 + y ** 2
    c = polyfit2d(x, y, z, degree=2, plot=True)
    print(c)
like image 141
AWehrhahn Avatar answered Sep 14 '25 00:09

AWehrhahn