I'm interested in using the JavaScript WebAudioAPI
to detect song beats, and then render them in a canvas.
I can handle the canvas part, but I'm not a big audio guy and really don't understand how to make a beat detector in JavaScript.
I've tried following this article but cannot, for the life of me, connect the dots between each function to make a functional program.
I know I should show you some code but honestly I don't have any, all my attempts have failed miserably and the relevant code it's in the previously mentioned article.
Anyways I'd really appreciate some guidance, or even better a demo of how to actually detect song beats with the WebAudioAPI
.
Thanks!
The WebAudio API is a high-level JavaScript API for processing and synthesizing audio in web applications. The actual processing will take place underlying implementation, such as Assembly, C, C++. The API consists on a graph, which redirect single or multiple input Sources into a Destination.
Not all browsers with support for the Audio API also support media streams (e.g. microphone input). See the getUserMedia/Streams API data for support for that feature. Firefox versions < 25 support an alternative, deprecated audio API. Chrome support went through some changes as of version 36.
Let’s define beat detection as determining (1) the location of significant drum hits within a song in order to (2) establish a tempo, in beats per minute (BPM). If you’re not familiar with using the WebAudio API and creating buffers, this tutorial will get you up to speed. We’ll use Go from Grimes as our sample track for the examples below.
We can use the tag <audio> to fetch the sound we want to load. Using the createMediaElementSource helper function from the WebContext, we can create a MediaElementAudioSourceNode to load the sound. And then, obtain the tag from JavaScript and use it on the createMediaElementSource:
The main thing to understand about the referenced article by Joe Sullivan is that even though it gives a lot of source code, it's far from final and complete code. To reach a working solution you will still need both some coding and debugging skills.
This answer draws most of its code from the referenced article, original licensing applies where appropriate.
Below is a naïve sample implementation for using the functions described by the above article, you still need to figure out correct thresholds for a functional solution.
The code consists of preparation code written for the answer:
and then, as described in the article:
For the threshold I used an arbitrary value of .98 of the range between maximum and minimum values; when grouping I added some additional checks and arbitrary rounding to avoid possible infinite loops and make it an easy-to-debug sample.
Note that commenting is scarce to keep the sample implementation brief because:
audio_file.onchange = function() {
var file = this.files[0];
var reader = new FileReader();
var context = new(window.AudioContext || window.webkitAudioContext)();
reader.onload = function() {
context.decodeAudioData(reader.result, function(buffer) {
prepare(buffer);
});
};
reader.readAsArrayBuffer(file);
};
function prepare(buffer) {
var offlineContext = new OfflineAudioContext(1, buffer.length, buffer.sampleRate);
var source = offlineContext.createBufferSource();
source.buffer = buffer;
var filter = offlineContext.createBiquadFilter();
filter.type = "lowpass";
source.connect(filter);
filter.connect(offlineContext.destination);
source.start(0);
offlineContext.startRendering();
offlineContext.oncomplete = function(e) {
process(e);
};
}
function process(e) {
var filteredBuffer = e.renderedBuffer;
//If you want to analyze both channels, use the other channel later
var data = filteredBuffer.getChannelData(0);
var max = arrayMax(data);
var min = arrayMin(data);
var threshold = min + (max - min) * 0.98;
var peaks = getPeaksAtThreshold(data, threshold);
var intervalCounts = countIntervalsBetweenNearbyPeaks(peaks);
var tempoCounts = groupNeighborsByTempo(intervalCounts);
tempoCounts.sort(function(a, b) {
return b.count - a.count;
});
if (tempoCounts.length) {
output.innerHTML = tempoCounts[0].tempo;
}
}
// http://tech.beatport.com/2014/web-audio/beat-detection-using-web-audio/
function getPeaksAtThreshold(data, threshold) {
var peaksArray = [];
var length = data.length;
for (var i = 0; i < length;) {
if (data[i] > threshold) {
peaksArray.push(i);
// Skip forward ~ 1/4s to get past this peak.
i += 10000;
}
i++;
}
return peaksArray;
}
function countIntervalsBetweenNearbyPeaks(peaks) {
var intervalCounts = [];
peaks.forEach(function(peak, index) {
for (var i = 0; i < 10; i++) {
var interval = peaks[index + i] - peak;
var foundInterval = intervalCounts.some(function(intervalCount) {
if (intervalCount.interval === interval) return intervalCount.count++;
});
//Additional checks to avoid infinite loops in later processing
if (!isNaN(interval) && interval !== 0 && !foundInterval) {
intervalCounts.push({
interval: interval,
count: 1
});
}
}
});
return intervalCounts;
}
function groupNeighborsByTempo(intervalCounts) {
var tempoCounts = [];
intervalCounts.forEach(function(intervalCount) {
//Convert an interval to tempo
var theoreticalTempo = 60 / (intervalCount.interval / 44100);
theoreticalTempo = Math.round(theoreticalTempo);
if (theoreticalTempo === 0) {
return;
}
// Adjust the tempo to fit within the 90-180 BPM range
while (theoreticalTempo < 90) theoreticalTempo *= 2;
while (theoreticalTempo > 180) theoreticalTempo /= 2;
var foundTempo = tempoCounts.some(function(tempoCount) {
if (tempoCount.tempo === theoreticalTempo) return tempoCount.count += intervalCount.count;
});
if (!foundTempo) {
tempoCounts.push({
tempo: theoreticalTempo,
count: intervalCount.count
});
}
});
return tempoCounts;
}
// http://stackoverflow.com/questions/1669190/javascript-min-max-array-values
function arrayMin(arr) {
var len = arr.length,
min = Infinity;
while (len--) {
if (arr[len] < min) {
min = arr[len];
}
}
return min;
}
function arrayMax(arr) {
var len = arr.length,
max = -Infinity;
while (len--) {
if (arr[len] > max) {
max = arr[len];
}
}
return max;
}
<input id="audio_file" type="file" accept="audio/*"></input>
<audio id="audio_player"></audio>
<p>
Most likely tempo: <span id="output"></span>
</p>
I wrote a tutorial here which shows how to do this with the javascript Web Audio API.
https://askmacgyver.com/blog/tutorial/how-to-implement-tempo-detection-in-your-application
Outline of Steps
This code below does the heavy lifting.
Load Audio File Into Array Buffer and Run Through Low Pass Filter
function createBuffers(url) {
// Fetch Audio Track via AJAX with URL
request = new XMLHttpRequest();
request.open('GET', url, true);
request.responseType = 'arraybuffer';
request.onload = function(ajaxResponseBuffer) {
// Create and Save Original Buffer Audio Context in 'originalBuffer'
var audioCtx = new AudioContext();
var songLength = ajaxResponseBuffer.total;
// Arguments: Channels, Length, Sample Rate
var offlineCtx = new OfflineAudioContext(1, songLength, 44100);
source = offlineCtx.createBufferSource();
var audioData = request.response;
audioCtx.decodeAudioData(audioData, function(buffer) {
window.originalBuffer = buffer.getChannelData(0);
var source = offlineCtx.createBufferSource();
source.buffer = buffer;
// Create a Low Pass Filter to Isolate Low End Beat
var filter = offlineCtx.createBiquadFilter();
filter.type = "lowpass";
filter.frequency.value = 140;
source.connect(filter);
filter.connect(offlineCtx.destination);
// Render this low pass filter data to new Audio Context and Save in 'lowPassBuffer'
offlineCtx.startRendering().then(function(lowPassAudioBuffer) {
var audioCtx = new(window.AudioContext || window.webkitAudioContext)();
var song = audioCtx.createBufferSource();
song.buffer = lowPassAudioBuffer;
song.connect(audioCtx.destination);
// Save lowPassBuffer in Global Array
window.lowPassBuffer = song.buffer.getChannelData(0);
console.log("Low Pass Buffer Rendered!");
});
},
function(e) {});
}
request.send();
}
createBuffers('https://askmacgyver.com/test/Maroon5-Moves-Like-Jagger-128bpm.mp3');
You Now Have an Array Buffer of the Low Pass Filtered Song (And Original)
It's comprised of a number of entries, sampleRate (44100 multiplied by the number of seconds of the song).
window.lowPassBuffer // Low Pass Array Buffer
window.originalBuffer // Original Non Filtered Array Buffer
Trim a 10 Second Clip from the Song
function getClip(length, startTime, data) {
var clip_length = length * 44100;
var section = startTime * 44100;
var newArr = [];
for (var i = 0; i < clip_length; i++) {
newArr.push(data[section + i]);
}
return newArr;
}
// Overwrite our array buffer to a 10 second clip starting from 00:10s
window.lowPassFilter = getClip(10, 10, lowPassFilter);
Down Sample Your Clip
function getSampleClip(data, samples) {
var newArray = [];
var modulus_coefficient = Math.round(data.length / samples);
for (var i = 0; i < data.length; i++) {
if (i % modulus_coefficient == 0) {
newArray.push(data[i]);
}
}
return newArray;
}
// Overwrite our array to down-sampled array.
lowPassBuffer = getSampleClip(lowPassFilter, 300);
Normalize Your Data
function normalizeArray(data) {
var newArray = [];
for (var i = 0; i < data.length; i++) {
newArray.push(Math.abs(Math.round((data[i + 1] - data[i]) * 1000)));
}
return newArray;
}
// Overwrite our array to the normalized array
lowPassBuffer = normalizeArray(lowPassBuffer);
Count the Flat Line Groupings
function countFlatLineGroupings(data) {
var groupings = 0;
var newArray = normalizeArray(data);
function getMax(a) {
var m = -Infinity,
i = 0,
n = a.length;
for (; i != n; ++i) {
if (a[i] > m) {
m = a[i];
}
}
return m;
}
function getMin(a) {
var m = Infinity,
i = 0,
n = a.length;
for (; i != n; ++i) {
if (a[i] < m) {
m = a[i];
}
}
return m;
}
var max = getMax(newArray);
var min = getMin(newArray);
var count = 0;
var threshold = Math.round((max - min) * 0.2);
for (var i = 0; i < newArray.length; i++) {
if (newArray[i] > threshold && newArray[i + 1] < threshold && newArray[i + 2] < threshold && newArray[i + 3] < threshold && newArray[i + 6] < threshold) {
count++;
}
}
return count;
}
// Count the Groupings
countFlatLineGroupings(lowPassBuffer);
Scale 10 Second Grouping Count to 60 Seconds to Derive Beats Per Minute
var final_tempo = countFlatLineGroupings(lowPassBuffer);
// final_tempo will be 21
final_tempo = final_tempo * 6;
console.log("Tempo: " + final_tempo);
// final_tempo will be 126
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With