I have a simple photograph that may or may not include a logo image. I'm trying to identify whether a picture includes the logo shape or not. The logo (rectangular shape with a few extra features) could be of various sizes and could have multiple occurrences. I'd like to use Computer Vision techniques to identify the location of these logo occurrences. Can someone point me in the right direction (algorithm, technique?) that can be used to achieve this goal?
I'm quite a novice to Computer Vision so any direction would be very appreciative.
Thanks!
Since you need a scale-invariant method (that's the proper jargon for "could be of various sizes") SIFT (as mentioned in Logo recognition in images, thanks overrider!) is a good first choice, it's very popular these days and is worth a try. You can find here some code to download. If you cannot use Matlab, you should probably go with OpenCV. Even if you end up discarding SIFT for some reason, trying to make it work will teach you a few important things about object recognition.
This section is mostly here to introduce you to a few important buzzwords, by describing a broad class of object detection methods, so that you can go and look these things up. Important: there are many other methods that do not fall in this class. We'll call this class "feature-based detection".
So first you go and find features in your image. These are characteristic points of the image (corners and line crossings are good examples) that have a lot of invariances: whatever reasonable processing you do to to your image (scaling, rotation, brightness change, adding a bit of noise, etc) it will not change the fact that there is a corner in a certain point. "Pixel value" or "vertical lines" are bad features. Sometimes a feature will include some numbers (e.g. the prominence of a corner) in addition to a position.
Then you do some clean-up, like remove features that are not strong enough.
Then you go to your database. That's something you've built in advance, usually by taking several nice and clean images of whatever you are trying to find, running you feature detection on them, cleaning things up, and arrange them in some data structure for your next stage —
Look-up. You have to take a bunch of features form your image and try to match them against your database: do they correspond to an object you are looking for? This is pretty non-trivial, since on the face of it you have to consider all subsets of the bunch of features you've found, which is exponential. So there are all kinds of smart hashing techniques to do it, like Hough transform and Geometric hashing.
Now you should do some verification. You have found some places in the image which are suspect: it's probable that they contain your object. Usually, you know what is the presumed size, orientation, and position of your object, and you can use something simple (like a convolution) to check if it's really there.
You end up with a bunch of probabilities, basically: for a few locations, how probable it is that your object is there. Here you do some outlier detection. If you expect only 1-2 occurrences of your object, you'll look for the largest probabilities that stand out, and take only these points. If you expect many occurrences (like face detection on a photo of a bunch of people), you'll look for very low probabilities and discard them.
That's it, you are done!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With