Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How can I use an array of function pointers?

People also ask

Can we have an array of function pointers?

4) Like normal pointers, we can have an array of function pointers. Below example in point 5 shows syntax for array of pointers. 5) Function pointer can be used in place of switch case.

How do you declare an array of function pointers in C++?

You can declare an array of function pointers in C++ using std::vector<std::function<>> notation, where you should also specify the template parameters for the std::function as needed. In this case, we inserted int(int, int) type to denote the functions that accept two int arguments and also have an int return type.

Why would you use an array of pointers to pointers?

The supercharger of pointers is an array of pointers to pointers because an array of pointers to pointers enables you to reorganize tons of data in memory by simply referring to memory addresses.


You have a good example here (Array of Function pointers), with the syntax detailed.

int sum(int a, int b);
int subtract(int a, int b);
int mul(int a, int b);
int div(int a, int b);

int (*p[4]) (int x, int y);

int main(void)
{
  int result;
  int i, j, op;

  p[0] = sum; /* address of sum() */
  p[1] = subtract; /* address of subtract() */
  p[2] = mul; /* address of mul() */
  p[3] = div; /* address of div() */
[...]

To call one of those function pointers:

result = (*p[op]) (i, j); // op being the index of one of the four functions

The above answers may help you but you may also want to know how to use array of function pointers.

void fun1()
{

}

void fun2()
{

}

void fun3()
{

}

void (*func_ptr[3])() = {fun1, fun2, fun3};

main()
{
    int option;


    printf("\nEnter function number you want");
    printf("\nYou should not enter other than 0 , 1, 2"); /* because we have only 3 functions */
    scanf("%d",&option);

    if((option>=0)&&(option<=2))
    { 
        (*func_ptr[option])();
    }

    return 0;
}

You can only assign the addresses of functions with the same return type and same argument types and no of arguments to a single function pointer array.

You can also pass arguments like below if all the above functions are having the same number of arguments of same type.

  (*func_ptr[option])(argu1);

Note: here in the array the numbering of the function pointers will be starting from 0 same as in general arrays. So in above example fun1 can be called if option=0, fun2 can be called if option=1 and fun3 can be called if option=2.


Here's how you can use it:

New_Fun.h

#ifndef NEW_FUN_H_
#define NEW_FUN_H_

#include <stdio.h>

typedef int speed;
speed fun(int x);

enum fp {
    f1, f2, f3, f4, f5
};

void F1();
void F2();
void F3();
void F4();
void F5();
#endif

New_Fun.c

#include "New_Fun.h"

speed fun(int x)
{
    int Vel;
    Vel = x;
    return Vel;
}

void F1()
{
    printf("From F1\n");
}

void F2()
{
    printf("From F2\n");
}

void F3()
{
    printf("From F3\n");
}

void F4()
{
    printf("From F4\n");
}

void F5()
{
    printf("From F5\n");
}

Main.c

#include <stdio.h>
#include "New_Fun.h"

int main()
{
    int (*F_P)(int y);
    void (*F_A[5])() = { F1, F2, F3, F4, F5 };    // if it is int the pointer incompatible is bound to happen
    int xyz, i;

    printf("Hello Function Pointer!\n");
    F_P = fun;
    xyz = F_P(5);
    printf("The Value is %d\n", xyz);
    //(*F_A[5]) = { F1, F2, F3, F4, F5 };
    for (i = 0; i < 5; i++)
    {
        F_A[i]();
    }
    printf("\n\n");
    F_A[f1]();
    F_A[f2]();
    F_A[f3]();
    F_A[f4]();
    return 0;
}

I hope this helps in understanding Function Pointer.


This "answer" is more of an addendum to VonC's answer; just noting that the syntax can be simplified via a typedef, and aggregate initialization can be used:

typedef int FUNC(int, int);

FUNC sum, subtract, mul, div;
FUNC *p[4] = { sum, subtract, mul, div };

int main(void)
{
    int result;
    int i = 2, j = 3, op = 2;  // 2: mul

    result = p[op](i, j);   // = 6
}

// maybe even in another file
int sum(int a, int b) { return a+b; }
int subtract(int a, int b) { return a-b; }
int mul(int a, int b) { return a*b; }
int div(int a, int b) { return a/b; }

Here's a simpler example of how to do it:

jump_table.c

int func1(int arg)  { return arg + 1; }
int func2(int arg)  { return arg + 2; }
int func3(int arg)  { return arg + 3; }
int func4(int arg)  { return arg + 4; }
int func5(int arg)  { return arg + 5; }
int func6(int arg)  { return arg + 6; }
int func7(int arg)  { return arg + 7; }
int func8(int arg)  { return arg + 8; }
int func9(int arg)  { return arg + 9; }
int func10(int arg) { return arg + 10; }

int (*jump_table[10])(int) = { func1, func2, func3, func4, func5, 
                               func6, func7, func8, func9, func10 };
    
int main(void) {
  int index = 2;
  int argument = 42;
  int result = (*jump_table[index])(argument);
  // result is 45
}

All functions stored in the array must have the same signature. This simply means that they must return the same type (e.g. int) and have the same arguments (a single int in the example above).


In C++, you can do the same with static class methods (but not instance methods). For example you could use MyClass::myStaticMethod in the array above but not MyClass::myInstanceMethod nor instance.myInstanceMethod:

class MyClass {
public:
  static int myStaticMethod(int foo)   { return foo + 17; }
  int        myInstanceMethod(int bar) { return bar + 17; }
}

MyClass instance;

Oh, there are tons of example. Just have a look at anything within glib or gtk. You can see the work of function pointers in work there all the way.

Here e.g the initialization of the gtk_button stuff.


static void
gtk_button_class_init (GtkButtonClass *klass)
{
  GObjectClass *gobject_class;
  GtkObjectClass *object_class;
  GtkWidgetClass *widget_class;
  GtkContainerClass *container_class;

  gobject_class = G_OBJECT_CLASS (klass);
  object_class = (GtkObjectClass*) klass;
  widget_class = (GtkWidgetClass*) klass;
  container_class = (GtkContainerClass*) klass;

  gobject_class->constructor = gtk_button_constructor;
  gobject_class->set_property = gtk_button_set_property;
  gobject_class->get_property = gtk_button_get_property;

And in gtkobject.h you find the following declarations:


struct _GtkObjectClass
{
  GInitiallyUnownedClass parent_class;

  /* Non overridable class methods to set and get per class arguments */
  void (*set_arg) (GtkObject *object,
           GtkArg    *arg,
           guint      arg_id);
  void (*get_arg) (GtkObject *object,
           GtkArg    *arg,
           guint      arg_id);

  /* Default signal handler for the ::destroy signal, which is
   *  invoked to request that references to the widget be dropped.
   *  If an object class overrides destroy() in order to perform class
   *  specific destruction then it must still invoke its superclass'
   *  implementation of the method after it is finished with its
   *  own cleanup. (See gtk_widget_real_destroy() for an example of
   *  how to do this).
   */
  void (*destroy)  (GtkObject *object);
};

The (*set_arg) stuff is a pointer to function and this can e.g be assigned another implementation in some derived class.

Often you see something like this

struct function_table {
   char *name;
   void (*some_fun)(int arg1, double arg2);
};

void function1(int  arg1, double arg2)....


struct function_table my_table [] = {
    {"function1", function1},
...

So you can reach into the table by name and call the "associated" function.

Or maybe you use a hash table in which you put the function and call it "by name".

Regards
Friedrich


Can use it in the way like this:

//! Define:
#define F_NUM 3
int (*pFunctions[F_NUM])(void * arg);

//! Initialise:
int someFunction(void * arg) {
    int a= *((int*)arg);
    return a*a;
}

pFunctions[0]= someFunction;

//! Use:
int someMethod(int idx, void * arg, int * result) {
    int done= 0;
    if (idx < F_NUM && pFunctions[idx] != NULL) {
        *result= pFunctions[idx](arg);
        done= 1;
    }
    return done;
}

int x= 2;
int z= 0;
someMethod(0, (void*)&x, &z);
assert(z == 4);