Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How can I reduce the memory of a pandas DataFrame?

Tags:

python

pandas

I am using pandas for my day to day work and some of the data frames I use are overwhelmingly big (in the order of hundreds of millions of rows by hundreds of columns). Is there any way of reducing the RAM memory consumption?

like image 821
ivallesp Avatar asked Aug 16 '19 21:08

ivallesp


1 Answers

You can use this function. It reduces the size of the data by clamping the data types to the minimum required for each column.

The code is not mine, I copied it from the following link and I adapted it for my needs. https://www.mikulskibartosz.name/how-to-reduce-memory-usage-in-pandas/

def reduce_mem_usage(df, int_cast=True, obj_to_category=False, subset=None):
    """
    Iterate through all the columns of a dataframe and modify the data type to reduce memory usage.
    :param df: dataframe to reduce (pd.DataFrame)
    :param int_cast: indicate if columns should be tried to be casted to int (bool)
    :param obj_to_category: convert non-datetime related objects to category dtype (bool)
    :param subset: subset of columns to analyse (list)
    :return: dataset with the column dtypes adjusted (pd.DataFrame)
    """
    start_mem = df.memory_usage().sum() / 1024 ** 2;
    gc.collect()
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))

    cols = subset if subset is not None else df.columns.tolist()

    for col in tqdm(cols):
        col_type = df[col].dtype

        if col_type != object and col_type.name != 'category' and 'datetime' not in col_type.name:
            c_min = df[col].min()
            c_max = df[col].max()

            # test if column can be converted to an integer
            treat_as_int = str(col_type)[:3] == 'int'
            if int_cast and not treat_as_int:
                treat_as_int = check_if_integer(df[col])

            if treat_as_int:
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.uint8).min and c_max < np.iinfo(np.uint8).max:
                    df[col] = df[col].astype(np.uint8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.uint16).min and c_max < np.iinfo(np.uint16).max:
                    df[col] = df[col].astype(np.uint16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.uint32).min and c_max < np.iinfo(np.uint32).max:
                    df[col] = df[col].astype(np.uint32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)
                elif c_min > np.iinfo(np.uint64).min and c_max < np.iinfo(np.uint64).max:
                    df[col] = df[col].astype(np.uint64)
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
        elif 'datetime' not in col_type.name and obj_to_category:
            df[col] = df[col].astype('category')
    gc.collect()
    end_mem = df.memory_usage().sum() / 1024 ** 2
    print('Memory usage after optimization is: {:.3f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))

    return df
like image 155
ivallesp Avatar answered Sep 17 '22 20:09

ivallesp