Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How can I recover the return value of a function passed to multiprocessing.Process?

People also ask

How can we get return value from multiprocessing process?

To get the return value of a function passed to Python multiprocessing. Process, we can use the manager. dict method to create a shared variable. to create a Process object with the target set to the worker function that runs for each process.

How does a multiprocessing pool work?

It works like a map-reduce architecture. It maps the input to the different processors and collects the output from all the processors. After the execution of code, it returns the output in form of a list or array. It waits for all the tasks to finish and then returns the output.

What is multiprocessing in Python?

multiprocessing is a package that supports spawning processes using an API similar to the threading module. The multiprocessing package offers both local and remote concurrency, effectively side-stepping the Global Interpreter Lock by using subprocesses instead of threads.


Use shared variable to communicate. For example like this:

import multiprocessing


def worker(procnum, return_dict):
    """worker function"""
    print(str(procnum) + " represent!")
    return_dict[procnum] = procnum


if __name__ == "__main__":
    manager = multiprocessing.Manager()
    return_dict = manager.dict()
    jobs = []
    for i in range(5):
        p = multiprocessing.Process(target=worker, args=(i, return_dict))
        jobs.append(p)
        p.start()

    for proc in jobs:
        proc.join()
    print(return_dict.values())

I think the approach suggested by @sega_sai is the better one. But it really needs a code example, so here goes:

import multiprocessing
from os import getpid

def worker(procnum):
    print('I am number %d in process %d' % (procnum, getpid()))
    return getpid()

if __name__ == '__main__':
    pool = multiprocessing.Pool(processes = 3)
    print(pool.map(worker, range(5)))

Which will print the return values:

I am number 0 in process 19139
I am number 1 in process 19138
I am number 2 in process 19140
I am number 3 in process 19139
I am number 4 in process 19140
[19139, 19138, 19140, 19139, 19140]

If you are familiar with map (the Python 2 built-in) this should not be too challenging. Otherwise have a look at sega_Sai's link.

Note how little code is needed. (Also note how processes are re-used).


For anyone else who is seeking how to get a value from a Process using Queue:

import multiprocessing

ret = {'foo': False}

def worker(queue):
    ret = queue.get()
    ret['foo'] = True
    queue.put(ret)

if __name__ == '__main__':
    queue = multiprocessing.Queue()
    queue.put(ret)
    p = multiprocessing.Process(target=worker, args=(queue,))
    p.start()
    p.join()
    print(queue.get())  # Prints {"foo": True}

Note that in Windows or Jupyter Notebook, with multithreading you have to save this as a file and execute the file. If you do it in a command prompt you will see an error like this:

 AttributeError: Can't get attribute 'worker' on <module '__main__' (built-in)>

For some reason, I couldn't find a general example of how to do this with Queue anywhere (even Python's doc examples don't spawn multiple processes), so here's what I got working after like 10 tries:

def add_helper(queue, arg1, arg2): # the func called in child processes
    ret = arg1 + arg2
    queue.put(ret)

def multi_add(): # spawns child processes
    q = Queue()
    processes = []
    rets = []
    for _ in range(0, 100):
        p = Process(target=add_helper, args=(q, 1, 2))
        processes.append(p)
        p.start()
    for p in processes:
        ret = q.get() # will block
        rets.append(ret)
    for p in processes:
        p.join()
    return rets

Queue is a blocking, thread-safe queue that you can use to store the return values from the child processes. So you have to pass the queue to each process. Something less obvious here is that you have to get() from the queue before you join the Processes or else the queue fills up and blocks everything.

Update for those who are object-oriented (tested in Python 3.4):

from multiprocessing import Process, Queue

class Multiprocessor():

    def __init__(self):
        self.processes = []
        self.queue = Queue()

    @staticmethod
    def _wrapper(func, queue, args, kwargs):
        ret = func(*args, **kwargs)
        queue.put(ret)

    def run(self, func, *args, **kwargs):
        args2 = [func, self.queue, args, kwargs]
        p = Process(target=self._wrapper, args=args2)
        self.processes.append(p)
        p.start()

    def wait(self):
        rets = []
        for p in self.processes:
            ret = self.queue.get()
            rets.append(ret)
        for p in self.processes:
            p.join()
        return rets

# tester
if __name__ == "__main__":
    mp = Multiprocessor()
    num_proc = 64
    for _ in range(num_proc): # queue up multiple tasks running `sum`
        mp.run(sum, [1, 2, 3, 4, 5])
    ret = mp.wait() # get all results
    print(ret)
    assert len(ret) == num_proc and all(r == 15 for r in ret)

This example shows how to use a list of multiprocessing.Pipe instances to return strings from an arbitrary number of processes:

import multiprocessing

def worker(procnum, send_end):
    '''worker function'''
    result = str(procnum) + ' represent!'
    print result
    send_end.send(result)

def main():
    jobs = []
    pipe_list = []
    for i in range(5):
        recv_end, send_end = multiprocessing.Pipe(False)
        p = multiprocessing.Process(target=worker, args=(i, send_end))
        jobs.append(p)
        pipe_list.append(recv_end)
        p.start()

    for proc in jobs:
        proc.join()
    result_list = [x.recv() for x in pipe_list]
    print result_list

if __name__ == '__main__':
    main()

Output:

0 represent!
1 represent!
2 represent!
3 represent!
4 represent!
['0 represent!', '1 represent!', '2 represent!', '3 represent!', '4 represent!']

This solution uses fewer resources than a multiprocessing.Queue which uses

  • a Pipe
  • at least one Lock
  • a buffer
  • a thread

or a multiprocessing.SimpleQueue which uses

  • a Pipe
  • at least one Lock

It is very instructive to look at the source for each of these types.


You can use the exit built-in to set the exit code of a process. It can be obtained from the exitcode attribute of the process:

import multiprocessing

def worker(procnum):
    print str(procnum) + ' represent!'
    exit(procnum)

if __name__ == '__main__':
    jobs = []
    for i in range(5):
        p = multiprocessing.Process(target=worker, args=(i,))
        jobs.append(p)
        p.start()

    result = []
    for proc in jobs:
        proc.join()
        result.append(proc.exitcode)
    print result

Output:

0 represent!
1 represent!
2 represent!
3 represent!
4 represent!
[0, 1, 2, 3, 4]