I am using PyCharm 2018.1 using Python 3.4 with Spark 2.3 installed via pip in a virtualenv. There is no hadoop installation on the local host, so there is no Spark installation (thus no SPARK_HOME, HADOOP_HOME, etc.)
When I try this:
from pyspark import SparkConf
from pyspark import SparkContext
conf = SparkConf()\
.setMaster("local")\
.setAppName("pyspark-unittests")\
.set("spark.sql.parquet.compression.codec", "snappy")
sc = SparkContext(conf = conf)
inputFile = sparkContext.textFile("s3://somebucket/file.csv")
I get:
py4j.protocol.Py4JJavaError: An error occurred while calling o23.partitions.
: java.io.IOException: No FileSystem for scheme: s3
How can I read from s3 while running pyspark in local mode without a complete Hadoop install locally?
FWIW - this works great when I execute it on an EMR node in non-local mode.
The following does not work (same error, although it does resolve and download the dependancies):
import os
os.environ['PYSPARK_SUBMIT_ARGS'] = '--packages "org.apache.hadoop:hadoop-aws:3.1.0" pyspark-shell'
from pyspark import SparkConf
from pyspark import SparkContext
conf = SparkConf()\
.setMaster("local")\
.setAppName("pyspark-unittests")\
.set("spark.sql.parquet.compression.codec", "snappy")
sc = SparkContext(conf = conf)
inputFile = sparkContext.textFile("s3://somebucket/file.csv")
Same (bad) results with:
import os
os.environ['PYSPARK_SUBMIT_ARGS'] = '--jars "/path/to/hadoop-aws-3.1.0.jar" pyspark-shell'
from pyspark import SparkConf
from pyspark import SparkContext
conf = SparkConf()\
.setMaster("local")\
.setAppName("pyspark-unittests")\
.set("spark.sql.parquet.compression.codec", "snappy")
sc = SparkContext(conf = conf)
inputFile = sparkContext.textFile("s3://somebucket/file.csv")
So Glennie's answer was close but not what would work in your case. The key thing was to select the right version of the dependencies. If you look at the virtual environment
Everything points to one version which 2.7.3
, which what you also need to use
os.environ['PYSPARK_SUBMIT_ARGS'] = '--packages "org.apache.hadoop:hadoop-aws:2.7.3" pyspark-shell'
You should verify the version that your installation using by checking the path venv/Lib/site-packages/pyspark/jars
inside your project's virtual env
And after that you can use s3a
by default or s3
by defining the handler class for the same
# Only needed if you use s3://
sc._jsc.hadoopConfiguration().set("fs.s3.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
sc._jsc.hadoopConfiguration().set('fs.s3a.access.key', 'awsKey')
sc._jsc.hadoopConfiguration().set('fs.s3a.secret.key', 'awsSecret')
s3File = sc.textFile("s3a://myrepo/test.csv")
print(s3File.count())
print(s3File.id())
And the output is below
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With