I want to implement the following problem in numpy and here is my code.
I've tried the following numpy code for this problem with one for loop. I am wondering if there is any more efficient way of doing this calculation? I really appreciate that!
k, d = X.shape
m = Y.shape[0]
c1 = 2.0*sigma**2
c2 = 0.5*np.log(np.pi*c1)
c3 = np.log(1.0/k)
L_B = np.zeros((m,))
for i in xrange(m):
if i % 100 == 0:
print i
L_B[i] = np.log(np.sum(np.exp(np.sum(-np.divide(
np.power(X-Y[i,:],2), c1)-c2,1)+c3)))
print np.mean(L_B)
I've thought of np.expand_dims(X, 2).repeat(Y.shape[0], 2)-Y
by creating a 3D tensor therefore the following calculation can be done by broadcasting, but that would waste a lot of memory when m
is large.
I also believe that the np.einsum()
utilizes nothing but the for loop so might not be that efficient, correct me if I am wrong.
Any thought?
Again, some have observed vectorize to be faster than normal for loops, but even the NumPy documentation states: “The vectorize function is provided primarily for convenience, not for performance.
A Python list can have different data-types, which puts lots of extra constraints while doing computation on it. Numpy is able to divide a task into multiple subtasks and process them parallelly. Numpy functions are implemented in C. Which again makes it faster compared to Python Lists.
Optimization Stage #1
My first level of optimizations using a direct translation of the loopy code to a broadcasting
based one upon introducing a new axis and as such not so memory efficient one, as listed below -
p1 = (-((X[:,None] - Y)**2)/c1)-c2
p11 = p1.sum(2)
p2 = np.exp(p11+c3)
out = np.log(p2.sum(0)).mean()
Optimization Stage #2
Bringing in few optimizations keeping in mind that we intend to separate out the operations on the constants, I ended up with the following -
c10 = -c1
c20 = X.shape[1]*c2
subs = (X[:,None] - Y)**2
p00 = subs.sum(2)
p10 = p00/c10
p11 = p10-c20
p2 = np.exp(p11+c3)
out = np.log(p2.sum(0)).mean()
Optimization Stage #3
Going further with it and and seeing the places where the operations could be optimized, I ended up using Scipy's cdist
to replace the heavy-weight work of the squaring and sum-reduction
. This should be pretty memory efficient and gave us the final implementation, as shown below -
from scipy.spatial.distance import cdist
# Setup constants
c10 = -c1
c20 = X.shape[1]*c2
c30 = c20-c3
c40 = np.exp(c30)
c50 = np.log(c40)
# Get stagewise operations corresponding to loopy ones
p1 = cdist(X, Y, 'sqeuclidean')
p2 = np.exp(p1/c10).sum(0)
out = np.log(p2).mean() - c50
Runtime test
Approaches -
def loopy_app(X, Y, sigma):
k, d = X.shape
m = Y.shape[0]
c1 = 2.0*sigma**2
c2 = 0.5*np.log(np.pi*c1)
c3 = np.log(1.0/k)
L_B = np.zeros((m,))
for i in xrange(m):
L_B[i] = np.log(np.sum(np.exp(np.sum(-np.divide(
np.power(X-Y[i,:],2), c1)-c2,1)+c3)))
return np.mean(L_B)
def vectorized_app(X, Y, sigma):
# Setup constants
k, d = D_A.shape
c1 = 2.0*sigma**2
c2 = 0.5*np.log(np.pi*c1)
c3 = np.log(1.0/k)
c10 = -c1
c20 = X.shape[1]*c2
c30 = c20-c3
c40 = np.exp(c30)
c50 = np.log(c40)
# Get stagewise operations corresponding to loopy ones
p1 = cdist(X, Y, 'sqeuclidean')
p2 = np.exp(p1/c10).sum(0)
out = np.log(p2).mean() - c50
return out
Timings and verification -
In [294]: # Setup inputs with m(=D_B.shape[0]) being a large number
...: X = np.random.randint(0,9,(100,10))
...: Y = np.random.randint(0,9,(10000,10))
...: sigma = 2.34
...:
In [295]: np.allclose(loopy_app(X, Y, sigma),vectorized_app(X, Y, sigma))
Out[295]: True
In [296]: %timeit loopy_app(X, Y, sigma)
1 loops, best of 3: 225 ms per loop
In [297]: %timeit vectorized_app(X, Y, sigma)
10 loops, best of 3: 23.6 ms per loop
In [298]: # Setup inputs with m(=Y.shape[0]) being a much large number
...: X = np.random.randint(0,9,(100,10))
...: Y = np.random.randint(0,9,(100000,10))
...: sigma = 2.34
...:
In [299]: np.allclose(loopy_app(X, Y, sigma),vectorized_app(X, Y, sigma))
Out[299]: True
In [300]: %timeit loopy_app(X, Y, sigma)
1 loops, best of 3: 2.27 s per loop
In [301]: %timeit vectorized_app(X, Y, sigma)
1 loops, best of 3: 243 ms per loop
Around 10x
speedup there!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With