I have the following working function:
unMaybe : (t : Type) -> {auto p : t = Maybe x} -> Type
unMaybe {x} _ = x
This function works fine:
> unMaybe (Maybe Int)
Int
I also have another similar function:
unMaybesA : (ts : Vect n Type) -> {xs : Vect n Type} -> {auto p : map Maybe xs = ts} -> Vect n Type
unMaybesA {xs} _ = xs
Unfortunately the following fails:
> unMaybesA [Maybe Int, Maybe String]
(input):1:1-35:When checking argument p to function Main.unMaybesA:
Can't find a value of type
Data.Vect.Vect n implementation of Prelude.Functor.Functor, method map Maybe
xs =
[Maybe Int, Maybe String]
But the following works:
> unMaybesA {xs=[_,_]} [Maybe Int, Maybe String]
[Int, String]
Is the a way to get Idris to automatically do {xs=[_,_]}
with however many _
the vector has?
unMaybesB : (ts : Vect n Type) -> {auto p : (xs : Vect n Type ** map Maybe xs = ts)} -> Vect n Type
unMaybesB {p} _ = fst p
Possibly by using an elaborator script to automatically fill p in the function above?
I have the outline of an elab script below. I just need to figure out how to generate n, ts, and xs from the goal.
helper1 : Vect n Type -> Vect n Type -> Type
helper1 ts xs = (map Maybe xs) = ts
unMaybesC : (ts : Vect n Type) -> {auto p : DPair (Vect n Type) (helper1 ts)} -> Vect n Type
unMaybesC {p} _ = fst p
helper2 : (n : Nat) -> (ts : Vect n Type) -> (xs : Vect n Type) -> helper1 ts xs -> DPair (Vect n Type) (helper1 ts)
helper2 _ _ xs p = MkDPair xs p
q : Elab ()
q = do
let n = the Raw `(2 : Nat)
let ts = the Raw `(with Vect [Maybe String, Maybe Int])
let xs = the Raw `(with Vect [String, Int])
fill `(helper2 ~n ~ts ~xs Refl)
solve
qC : Vect 2 Type
qC = unMaybesC {p=%runElab q} [Maybe String, Maybe Int]
map Maybe xs = ts
seems idiomatic, but is quite difficult. If you want to auto
search for a non-simple proof, write an explicit proof type. Then the proof search will try the constructors and is guided in the right direction.
data IsMaybes : Vect n Type -> Vect n Type -> Type where
None : IsMaybes [] []
Then : IsMaybes xs ms -> IsMaybes (t :: xs) (Maybe t :: ms)
unMaybes : (ts : Vect n Type) -> {xs : Vect n Type} -> {auto p : IsMaybes xs ts} -> Vect n Type
unMaybes ts {xs} = xs
And with this:
> unMaybes [Maybe Nat, Maybe Int, Maybe (Maybe String)]
[Nat, Int, Maybe String] : Vect 3 Type
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With