I have a raster stack with 100+ files. And I want to extract the values from each file for particular lat-long locations. This gives me the list of values for one Lat-Long combination.
plist <- list.files(pattern = "\\.tif$", include.dirs = TRUE)
pstack <- stack(plist)
#levelplot(pstack)
for (i in 1:length(plist))
t[i]=extract(pstack[[i]], 35,-90)
How can I do it for thousands of locations when I have the lat-long locations in a separate file/dataframe. There is a location ID that I want to preserve too in the final list:
Lat Long LocID
35 -90 001
35 -95 221
30 -95.4 226
31.5 - 90 776
My final objective is to have a dataframe of this type:
Lat Long LocID value
35 -90 001 0.5
35 -95 221 1.4
30 -95.4 226 2.5
31.5 - 90 776 4.5
Though if it is not possible to preserve the LocID, that's fine too.
One of the files: https://www.dropbox.com/s/ank4uxjbjk3chaz/new_conus.tif?dl=0
Testing a solution from comments:
latlong<-structure(list(lon = c(-71.506667, -71.506667, -71.506667, -71.215278,
-71.215278, -71.215278, -71.215278, -71.215278, -71.215278, -71.215278
), lat = c(42.8575, 42.8575, 42.8575, 42.568056, 42.568056, 42.568056,
42.568056, 42.568056, 42.568056, 42.568056)), .Names = c("lon",
"lat"), row.names = c(NA, 10L), class = "data.frame")
ext<-extract(pstack,latlong)
gives
Error in UseMethod("extract_") : no applicable method for 'extract_' applied to an object of class "c('RasterStack', 'Raster', 'RasterStackBrick', 'BasicRaster')"
Update #2:
The error was because it was conflicting with another package. This works:
raster::extract(pstack,latlong)
You can use extract
function in raster
library. First you read in your data frame and select the lon
, lat
columns. Let's say you have dataframe
dat
and the raster stack of pstack
loc <- dat[,c("long", "lat")]
ext <- extract(pstack, loc)
new_d <- cbind(dat, ext) # bind the extracted values back to the previous dataframe
I don't usually work with this type of data, but how about this:
library(sp)
library(raster)
library(rgdal)
# coordinate data
coords <- read.table(text = 'Lat Long LocID
35 -90 001
35 -95 221
30 -95.4 226
31.5 -90 776', header = T)
# list of all files
plist <- c('~/Downloads/new_conus.tif', '~/Downloads/new_conus copy.tif')
# image stack
data.images <- stack(plist)
# make a master data frame containing all necessary data
data.master <- data.frame(file = rep(plist, each = nrow(coords)), file.id = rep(1:length(plist), each = nrow(coords)), coords)
At this point, we have a master data frame that looks like this:
file file.id Lat Long LocID
1 ~/Downloads/new_conus.tif 1 35.0 -90.0 1
2 ~/Downloads/new_conus.tif 1 35.0 -95.0 221
3 ~/Downloads/new_conus.tif 1 30.0 -95.4 226
4 ~/Downloads/new_conus.tif 1 31.5 -90.0 776
5 ~/Downloads/new_conus copy.tif 2 35.0 -90.0 1
6 ~/Downloads/new_conus copy.tif 2 35.0 -95.0 221
7 ~/Downloads/new_conus copy.tif 2 30.0 -95.4 226
8 ~/Downloads/new_conus copy.tif 2 31.5 -90.0 776
Now we just extract the value corresponding to the data in each row of the data frame:
# extract values for each row in the master data frame
data.master$value <- NA
for (i in 1:nrow(data.master)) {
data.master$value[i] <- with(data.master, extract(data.images[[file.id[i]]], Lat[i], Long[i]))
}
file file.id Lat Long LocID value
1 ~/Downloads/new_conus.tif 1 35.0 -90.0 1 255
2 ~/Downloads/new_conus.tif 1 35.0 -95.0 221 255
3 ~/Downloads/new_conus.tif 1 30.0 -95.4 226 259
4 ~/Downloads/new_conus.tif 1 31.5 -90.0 776 249
5 ~/Downloads/new_conus copy.tif 2 35.0 -90.0 1 255
6 ~/Downloads/new_conus copy.tif 2 35.0 -95.0 221 255
7 ~/Downloads/new_conus copy.tif 2 30.0 -95.4 226 259
8 ~/Downloads/new_conus copy.tif 2 31.5 -90.0 776 249
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With