The main idea is to convert TFRecords into numpy arrays. Assume that the TFRecord stores images. Specifically:
1.jpg 2 2.jpg 4 3.jpg 5
I currently use the following code:
import tensorflow as tf
import os
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
'height': tf.FixedLenFeature([], tf.int64),
'width': tf.FixedLenFeature([], tf.int64),
'depth': tf.FixedLenFeature([], tf.int64)
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
label = tf.cast(features['label'], tf.int32)
height = tf.cast(features['height'], tf.int32)
width = tf.cast(features['width'], tf.int32)
depth = tf.cast(features['depth'], tf.int32)
return image, label, height, width, depth
with tf.Session() as sess:
filename_queue = tf.train.string_input_producer(["../data/svhn/svhn_train.tfrecords"])
image, label, height, width, depth = read_and_decode(filename_queue)
image = tf.reshape(image, tf.pack([height, width, 3]))
image.set_shape([32,32,3])
init_op = tf.initialize_all_variables()
sess.run(init_op)
print (image.eval())
I'm just reading trying to get at least one image for starters. The code just gets stuck when I run this.
TFRecordReader() file = tf. train. string_input_producer("record. tfrecord") _, serialized_record = reader.
The TFRecord format is a simple format for storing a sequence of binary records. Protocol buffers are a cross-platform, cross-language library for efficient serialization of structured data. Protocol messages are defined by . proto files, these are often the easiest way to understand a message type.
a NumPy array is created by using the np. array() method. The NumPy array is converted to tensor by using tf. convert_to_tensor() method.
Creating TFRecord Files with Code Most often we have labeled data in PASCAL VOC XML or COCO JSON. Creating a TFRecord file from this data requires following a multistep process: (1) creating a TensorFlow Object Detection CSV (2) Using that TensorFlow Object Detection CSV to create TFRecord files.
Oops, it was a silly mistake on my part. I used a string_input_producer but forgot to run the queue_runners.
with tf.Session() as sess:
filename_queue = tf.train.string_input_producer(["../data/svhn/svhn_train.tfrecords"])
image, label, height, width, depth = read_and_decode(filename_queue)
image = tf.reshape(image, tf.pack([height, width, 3]))
image.set_shape([32,32,3])
init_op = tf.initialize_all_variables()
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(1000):
example, l = sess.run([image, label])
print (example,l)
coord.request_stop()
coord.join(threads)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With