Are there any modules available in Python to convert a regular expression to corresponding NFA, or do I have to build the code from scratch (by converting the regex from infix to postfix and then implementing Thompson's Algorithm to get the corresponding NFA)?
Is it possible in Python to get the state diagram of an NFA from the transition table?
regex=''.join(postfix)
keys=list(set(re.sub('[^A-Za-z0-9]+', '', regex)+'e'))
s=[];stack=[];start=0;end=1
counter=-1;c1=0;c2=0
for i in regex:
if i in keys:
counter=counter+1;c1=counter;counter=counter+1;c2=counter;
s.append({});s.append({})
stack.append([c1,c2])
s[c1][i]=c2
elif i=='*':
r1,r2=stack.pop()
counter=counter+1;c1=counter;counter=counter+1;c2=counter;
s.append({});s.append({})
stack.append([c1,c2])
s[r2]['e']=(r1,c2);s[c1]['e']=(r1,c2)
if start==r1:start=c1
if end==r2:end=c2
elif i=='.':
r11,r12=stack.pop()
r21,r22=stack.pop()
stack.append([r21,r12])
s[r22]['e']=r11
if start==r11:start=r21
if end==r22:end=r12
else:
counter=counter+1;c1=counter;counter=counter+1;c2=counter;
s.append({});s.append({})
r11,r12=stack.pop()
r21,r22=stack.pop()
stack.append([c1,c2])
s[c1]['e']=(r21,r11); s[r12]['e']=c2; s[r22]['e']=c2
if start==r11 or start==r21:start=c1
if end==r22 or end==r12:end=c2
print keys
print s
this is the pretty much code sample after the postfix
. s
contains the transition table and keys contains all the terminals used including e
. e
is used for Epsilon
.
It's completely based on Thompson's Algorithm.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With