Namely, how does the following code:
var sup = new Array(5);
sup[0] = 'z3ero';
sup[1] = 'o3ne';
sup[4] = 'f3our';
document.write(sup.length + "<br />");
output '5' for the length, when all you've done is set various elements?
My 'problem' with this code is that I don't understand how length
changes without calling a getLength()
or a setLength()
method. When I do any of the following:
a.length
a['length']
a.length = 4
a['length'] = 5
on a non-array object, it behaves like a dict / associative array. When I do this on the array object, it has special meaning. What mechanism in JavaScript allows this to happen? Does JavaScript have some type of property system which translates
a.length
a['length']
into "get" methods and
a.length = 4
a['length'] = 5
into "set" methods?
For an array, if you use it with a numeric index, it returns/sets the expected indexed item. If you use it with a string, it returns/sets the named property on the array object - unless the string corresponds to a numeric value, then it returns the indexed item.
Implementation of arrays performs various operations like push (adding element), pop (deleting element) element at the end of the array, getting the element from particular index, inserting and deleting element from particular index.
Once a JS array becomes large (this also includes holey arrays), V8 starts using a hash table to store the array elements. The array is now associated with the “slow” dictionary elements kind. For hot loops, the “slow” kind may be multiple orders slower than array-based kinds.
The humble creators of JavaScript have provided us with the typeof operator. typeof is used to know the type of the variable in question. typeof used on an array returns Object rather than Array . We get this result because arrays are not really arrays in JavaScript.
Characteristics of a JavaScript array
In JavaScript, it is hard for the runtime to know whether the array is going to be dense or sparse. So all it can do is take a guess. All implementations use a heuristic to determine if the array is dense or sparse.
For example, code in point 2 above, can indicate to the JavaScript runtime that this is likely a sparse array implementation. If the array is initialised with an initial count, this could indicate that this is likely a dense array.
When the runtime detects that the array is sparse, it is implemented in a similar way to an object. So instead of maintaining a contiguous array, a key/value map is built.
For more references, see How are JavaScript arrays implemented internally?
Everything in JavaScript is an object. In the case of an Array
, the length
property returns the size of the internal storage area for indexed items of the array. Some of the confusion may come into play in that the []
operator works for both numeric and string arguments. For an array, if you use it with a numeric index, it returns/sets the expected indexed item. If you use it with a string, it returns/sets the named property on the array object - unless the string corresponds to a numeric value, then it returns the indexed item. This is because in JavaScript array indexes are coerced to strings by an implicit toString()
call. Frankly, this is just one more of those things that makes you scratch your head and say "JavaScript, this, this is why they laugh at you."
The actual underlying representation may differ between browsers (or it may not). I wouldn't rely on anything other than the interface that is supplied when working with it.
You can find out more about JavaScript arrays at MDN.
This really depends on what you intend to do with it.
[].length
is "magical".
It doesn't actually return the number of items in the array. It returns the largest instated index in the array.
var testArr = []; testArr[5000] = "something"; testArr.length; // 5001
But the method behind the setter is hidden in the engine itself.
Some engines in some browsers will give you access to their implementations of those magic-methods.
Others will keep everything completely locked down.
So don't rely on defineGetter and defineSetter methods, or even, really, __proto__
methods, unless you know which browsers you know you're targeting, and which you aren't.
This will change in the future, where opt-in applications written in ECMAScript Next/6 will have access to more.
ECMAScript 5-compliant browsers are already starting to offer get
and set
magic methods in objects and there's more to come... ...but it's probably a while away before you can dump support for oldIE and a tonne of smartphones, et cetera...
It is important to know that when you do sup['look'] = 4;
you are not using an associative array, but rather modify properties on the object sup
.
It is equivalent to sup.look = 4;
since you can dynamically add properties on JavaScript objects at any time. sup['length']
would for an instance output 5 in your first example.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With