HOG is popular in human detection. Can it be used for detecting objects like cup in the image for example.
I am sorry for not asking programming question, but I mean to get the idea if i can use hog to extract object features.
According to my research I have dont for few days I feel yes but I am not sure.
Histogram of Oriented Gradients, also known as HOG, is a feature descriptor like the Canny Edge Detector, SIFT (Scale Invariant and Feature Transform) . It is used in computer vision and image processing for the purpose of object detection.
The HOG features are widely use for object detection. HOG decomposes an image into small squared cells, computes an histogram of oriented gradients in each cell, normalizes the result using a block-wise pattern, and return a descriptor for each cell.
Typically, a feature descriptor converts an image of size width x height x 3 (channels ) to a feature vector / array of length n. In the case of the HOG feature descriptor, the input image is of size 64 x 128 x 3 and the output feature vector is of length 3780.
Yes, HOG (Histogram of Oriented Gradients) can be used to detect any kind of objects, as to a computer, an image is a bunch of pixels and you may extract features regardless of their contents. Another question, though, is its effectiveness in doing so.
HOG, SIFT, and other such feature extractors are methods used to extract relevant information from an image to describe it in a more meaningful way. When you want to detect an object or person in an image with thousands (and maybe millions) of pixels, it is inefficient to simply feed a vector with millions of numbers to a machine learning algorithm as
The HOG algorithm, specifically, creates histograms of edge orientations from certain patches in images. A patch may come from an object, a person, meaningless background, or anything else, and is merely a way to describe an area using edge information. As mentioned previously, this information can then be used to feed a machine learning algorithm such as the classical support vector machines to train a classifier able to distinguish one type of object from another.
The reason HOG has had so much success with pedestrian detection is because a person can greatly vary in color, clothing, and other factors, but the general edges of a pedestrian remain relatively constant, especially around the leg area. This does not mean that it cannot be used to detect other types of objects, but its success can vary depending on your particular application. The HOG paper shows in detail how these descriptors can be used for classification.
It is worthwhile to note that for several applications, the results obtained by HOG can be greatly improved using a pyramidal scheme. This works as follows: Instead of extracting a single HOG vector from an image, you can successively divide the image (or patch) into several sub-images, extracting from each of these smaller divisions an individual HOG vector. The process can then be repeated. In the end, you can obtain a final descriptor by concatenating all of the HOG vectors into a single vector, as shown in the following image.
This has the advantage that in larger scales the HOG features provide more global information, while in smaller scales (that is, in smaller subdivisions) they provide more fine-grained detail. The disadvantage is that the final descriptor vector grows larger, thus taking more time to extract and to train using a given classifier.
In short: Yes, you can use them.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With