I'm using elasticsearch and need to implement facet search for hierarchical object as follow:
So I need to get facets for two related objects. Documentation says that it's possible to get such kind of facets for numeric value, but I need it for strings http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-facets-terms-stats-facet.html
Here is another interesting topic, unfortunately it's old: http://elasticsearch-users.115913.n3.nabble.com/Pivot-facets-td2981519.html
Does it possible with elastic search? If so, how can I do that?
The previous solution works really well until you have no more than a multi-level tag on a single-document. In this case a simple aggregation doesn't work, because the flat structure of the lucene fields mix the results on the internal aggregation. See the example below:
DELETE /test_category
POST /test_category
# Insert a doc with 2 hierarchical tags
POST /test_category/test/1
{
"categories": [
{
"cat_1": "1",
"cat_2": "1.1"
},
{
"cat_1": "2",
"cat_2": "2.2"
}
]
}
# Simple two-levels aggregations query
GET /test_category/test/_search?search_type=count
{
"aggs": {
"main_category": {
"terms": {
"field": "categories.cat_1"
},
"aggs": {
"sub_category": {
"terms": {
"field": "categories.cat_2"
}
}
}
}
}
}
That's the WRONG response that I have got on ES 1.4, where the fields on the internal aggregation are mixed at a document level:
{
...
"aggregations": {
"main_category": {
"buckets": [
{
"key": "1",
"doc_count": 1,
"sub_category": {
"buckets": [
{
"key": "1.1",
"doc_count": 1
},
{
"key": "2.2", <= WRONG
"doc_count": 1
}
]
}
},
{
"key": "2",
"doc_count": 1,
"sub_category": {
"buckets": [
{
"key": "1.1", <= WRONG
"doc_count": 1
},
{
"key": "2.2",
"doc_count": 1
}
]
}
}
]
}
}
}
A Solution can be to use nested objects. These are the steps to do:
1) Define a new type in the schema with nested objects
POST /test_category/test2/_mapping
{
"test2": {
"properties": {
"categories": {
"type": "nested",
"properties": {
"cat_1": {
"type": "string"
},
"cat_2": {
"type": "string"
}
}
}
}
}
}
# Insert a single document
POST /test_category/test2/1
{"categories":[{"cat_1":"1","cat_2":"1.1"},{"cat_1":"2","cat_2":"2.2"}]}
2) Run a nested aggregation query:
GET /test_category/test2/_search?search_type=count
{
"aggs": {
"categories": {
"nested": {
"path": "categories"
},
"aggs": {
"main_category": {
"terms": {
"field": "categories.cat_1"
},
"aggs": {
"sub_category": {
"terms": {
"field": "categories.cat_2"
}
}
}
}
}
}
}
}
That's the response, now correct, that I have got:
{
...
"aggregations": {
"categories": {
"doc_count": 2,
"main_category": {
"buckets": [
{
"key": "1",
"doc_count": 1,
"sub_category": {
"buckets": [
{
"key": "1.1",
"doc_count": 1
}
]
}
},
{
"key": "2",
"doc_count": 1,
"sub_category": {
"buckets": [
{
"key": "2.2",
"doc_count": 1
}
]
}
}
]
}
}
}
}
The same solution can be extended to a more than two-levels hierarchy facet.
Currently, elasticsearch does not support hierarchical facetting out-of-the-box. But the upcoming 1.0 release features a new aggregations module, that can be used to get these kind of facets (which are more like pivot-facets rather than hierarchical facets). Version 1.0 is currently in beta, you can download the second beta and test out aggregatins by yourself. Your example might look like
curl -XPOST 'localhost:9200/_search?pretty' -d '
{
"aggregations": {
"main category": {
"terms": {
"field": "cat_1",
"order": {"_term": "asc"}
},
"aggregations": {
"sub category": {
"terms": {
"field": "cat_2",
"order": {"_term": "asc"}
}
}
}
}
}
}'
The idea is, to have a different field for each level of facetting and bucket your facets based on the terms of the first level (cat_1
). These aggregations then would have sub-buckets, based on the terms of the second level (cat_2
). The result may look like
{
"aggregations" : {
"main category" : {
"buckets" : [ {
"key" : "category 1",
"doc_count" : 10,
"sub category" : {
"buckets" : [ {
"key" : "subcategory 1",
"doc_count" : 4
}, {
"key" : "subcategory 2",
"doc_count" : 6
} ]
}
}, {
"key" : "category 2",
"doc_count" : 7,
"sub category" : {
"buckets" : [ {
"key" : "subcategory 1",
"doc_count" : 3
}, {
"key" : "subcategory 2",
"doc_count" : 4
} ]
}
} ]
}
}
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With