I have a Many-to-Many
relationship between the class Foo
and Bar
. Because I want to have additional information on the helper table, I had to make a helper class FooBar
as explained here: The best way to map a many-to-many association with extra columns when using JPA and Hibernate
I created a Foo, and created some bars (saved to DB). When I then add one of the bars to the foo using
foo.addBar(bar); // adds it bidirectionally
barRepository.save(bar); // JpaRepository
then the DB-entry for FooBar is created - as expected.
But when I want to remove that same bar again from the foo, using
foo.removeBar(bar); // removes it bidirectionally
barRepository.save(bar); // JpaRepository
then the earlier created FooBar-entry is NOT deleted from the DB.
With debugging I saw that the foo.removeBar(bar);
did indeed remove bidirectionally. No Exceptions are thrown.
Am I doing something wrong? I am quite sure it has to do with Cascading options, since I only save the bar.
What I have tried:
adding orphanRemoval = true
on both @OneToMany - annotations, which did not work. And I think that's correct, because I don't delete neither Foo nor Bar, just their relation.
excluding CascadeType.REMOVE from the @OneToMany annotations, but same as orphanRemoval I think this is not for this case.
Edit: I suspect there has to be something in my code or model that messes with my orphanRemoval, since there are now already 2 answers who say that it works (with orphanRemoval=true
).
The original question has been answered, but if anybody knows what could cause my orphanRemoval not to work I would really appreciate your input. Thanks
Code: Foo, Bar, FooBar
public class Foo {
private Collection<FooBar> fooBars = new HashSet<>();
// constructor omitted for brevity
@OneToMany(cascade = CascadeType.ALL, mappedBy = "foo", fetch = FetchType.EAGER)
public Collection<FooBar> getFooBars() {
return fooBars;
}
public void setFooBars(Collection<FooBar> fooBars) {
this.fooBars = fooBars;
}
// use this to maintain bidirectional integrity
public void addBar(Bar bar) {
FooBar fooBar = new FooBar(bar, this);
fooBars.add(fooBar);
bar.getFooBars().add(fooBar);
}
// use this to maintain bidirectional integrity
public void removeBar(Bar bar){
// I do not want to disclose the code for findFooBarFor(). It works 100%, and is not reloading data from DB
FooBar fooBar = findFooBarFor(bar, this);
fooBars.remove(fooBar);
bar.getFooBars().remove(fooBar);
}
}
public class Bar {
private Collection<FooBar> fooBars = new HashSet<>();
// constructor omitted for brevity
@OneToMany(fetch = FetchType.EAGER, mappedBy = "bar", cascade = CascadeType.ALL)
public Collection<FooBar> getFooBars() {
return fooBars;
}
public void setFooBars(Collection<FooBar> fooBars) {
this.fooBars = fooBars;
}
}
public class FooBar {
private FooBarId id; // embeddable class with foo and bar (only ids)
private Foo foo;
private Bar bar;
// this is why I had to use this helper class (FooBar),
// else I could have made a direct @ManyToMany between Foo and Bar
private Double additionalInformation;
public FooBar(Foo foo, Bar bar){
this.foo = foo;
this.bar = bar;
this.additionalInformation = .... // not important
this.id = new FooBarId(foo.getId(), bar.getId());
}
@EmbeddedId
public FooBarId getId(){
return id;
}
public void setId(FooBarId id){
this.id = id;
}
@ManyToOne
@MapsId("foo")
@JoinColumn(name = "fooid", referencedColumnName = "id")
public Foo getFoo() {
return foo;
}
public void setFoo(Foo foo) {
this.foo = foo;
}
@ManyToOne
@MapsId("bar")
@JoinColumn(name = "barid", referencedColumnName = "id")
public Bar getBar() {
return bar;
}
public void setBar(Bar bar) {
this.bar = bar;
}
// getter, setter for additionalInformation omitted for brevity
}
I tried this out from the example code. With a couple of 'sketchings in' this reproduced the fault.
The resolution did turn out to be as simple as adding the orphanRemoval = true
you mentioned though. On Foo.getFooBars()
:
@OneToMany(cascade = CascadeType.ALL, mappedBy = "foo", fetch = FetchType.EAGER, orphanRemoval = true)
public Collection<FooBar> getFooBars() {
return fooBars;
}
It seemed easiest to post that reproduction up to GitHub - hopefully there's a further subtle difference or something I missed in there.
This is based around Spring Boot and an H2 in-memory database so should work with no other environment - just try mvn clean test
if in doubt.
The FooRepositoryTest
class has the test case. It has a verify for the removal of the linking FooBar
, or it may just be easier to read the SQL that gets logged.
Edit
This is the screenshot mentioned in a comment below:
I've tested your scenario and did the following three modifications to make it work:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With