I have a dataframe where each column contains values considered "normal" if they fall within an interval, which is different for every column:
# The main df
df = pd.DataFrame({"A": [20, 10, 7, 39],
"B": [1, 8, 12, 9],
"C": [780, 800, 1200, 250]})
The df_info
represents the intervals for each column of df
.
So for example df_info["A"][0]
is the min for the column df["A"]
and df_info["A"][1]
represents the max for the column df["A"]
and so on.
df_info = pd.DataFrame({"A": [22, 35],
"B": [5, 10],
"C": [850, 900]})
Thanks to this SO Answer I was able to create a custom heatmap to print in blue values below the range, in red value above the range and in white values within the range. Just remember each column has a different range. SO i normalized according to this:
df_norm = pd.DataFrame()
for col in df:
col_min = df_info[col][0]
col_max = df_info[col][1]
df_norm[col] = (df[col] - col_min) / (col_max - col_min)
And finally printed my heatmap
vmin = df_norm.min().min()
vmax = df_norm.max().max()
norm_zero = (0 - vmin) / (vmax - vmin)
norm_one = (1 - vmin) / (vmax - vmin)
colors = [[0, 'darkblue'],
[norm_zero, 'white'],
[norm_one, 'white'],
[1, 'darkred']
]
cmap = LinearSegmentedColormap.from_list('', colors, )
fig, ax = plt.subplots()
ax=sns.heatmap(data=data,
annot=True,
annot_kws={'size': 'large'},
mask=None,
cmap=cmap,
vmin=vmin,
vmax=vmax) \
.set_facecolor('white')
In the example you can see that the third column has values much higher/lower compared to the the 0-1
interval (and to the first column) so they "absorb" all the shades of red and blue.
QUESTION: What I want to obtain is use the entire shades of red/blue for each column or at least to reduce the perceptual difference between (for example) the first and third column.
I had tough of:
mpl.colors.LogNorm
but I'm not sure how to use it with my custom LinearSegmentedColormap
Using a mask per column, you could draw the heatmap column per column, each with its own colormap:
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.cm import ScalarMappable
df = pd.DataFrame({"A": [20, 10, 7, 39],
"B": [1, 8, 12, 9],
"C": [780, 800, 1200, 250]})
df_info = pd.DataFrame({"A": [22, 35],
"B": [5, 10],
"C": [850, 900]})
df_norm = pd.DataFrame()
for col in df:
col_min = df_info[col][0]
col_max = df_info[col][1]
df_norm[col] = (df[col] - col_min) / (col_max - col_min)
fig, ax = plt.subplots()
for col in df:
vmin = df_norm[col].min()
vmax = df_norm[col].max()
norm_zero = (0 - vmin) / (vmax - vmin)
norm_one = (1 - vmin) / (vmax - vmin)
colors = [[0, 'darkblue'],
[norm_zero, 'white'],
[norm_one, 'white'],
[1, 'darkred']]
cmap = LinearSegmentedColormap.from_list('', colors)
mask = df.copy()
for col_m in mask:
mask[col_m] = col != col_m
sns.heatmap(data=df_norm,
annot=df.to_numpy(), annot_kws={'size': 'large'}, fmt="g",
mask=mask,
cmap=cmap, vmin=vmin, vmax=vmax, cbar=False, ax=ax)
ax.set_facecolor('white')
colors = [[0, 'darkblue'],
[1 / 3, 'white'],
[2 / 3, 'white'],
[1, 'darkred']]
cmap = LinearSegmentedColormap.from_list('', colors)
cbar = plt.colorbar(ScalarMappable(cmap=cmap), ax=ax, ticks=[0, 1 / 3, 2 / 3, 1])
cbar.ax.yaxis.set_ticklabels(['min\nlimit', 'min', 'max', 'max\nlimit'])
plt.tight_layout()
plt.show()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With