Is it possible to know if a matrix stored in HDF5 format is in RowMajor or ColMajor? For example when I save matrices from octave, which stores them internally as ColMajor, I need to transpose them when I read them in my C code where matrices are stored in RowMajor, and vice versa.
This is probably due to your chunk layout - the more chunk sizes are small the more your HDF5 file will be bloated. Try to find an optimal balance between chunk sizes (to solve your use-case properly) and the overhead (size-wise) that they introduce in the HDF5 file.
Supports Large, Complex Data: HDF5 is a compressed format that is designed to support large, heterogeneous, and complex datasets. Supports Data Slicing: "Data slicing", or extracting portions of the dataset as needed for analysis, means large files don't need to be completely read into the computers memory or RAM.
HDF5 files are organized in a hierarchical structure, with two primary structures: groups and datasets. HDF5 group: a grouping structure containing instances of zero or more groups or datasets, together with supporting metadata. HDF5 dataset: a multidimensional array of data elements, together with supporting metadata.
Reading HDF5 files To open and read data we use the same File method in read mode, r. To see what data is in this file, we can call the keys() method on the file object. We can then grab each dataset we created above using the get method, specifying the name. This returns a HDF5 dataset object.
HDF5 stores data in row major order:
HDF5 uses C storage conventions, assuming that the last listed dimension is the fastest-changing dimension and the first-listed dimension is the slowest changing.
from the HDF5 User's Guide.
However, if you're using Octave's built-in HDF5 interface, it will automatically transpose the arrays for you. In general, how the data is actually written in the HDF5 file should be completely opaque to the end-user, and the interface should deal with differences in array ordering, etc.
As @Yossarian pointed out. HDF5 always stores data as row-major (C convention). Octave is the same as Fortran and internally stores data as column-major.
When writing a matrix from Octave, the HDF5 layer does the transpose for you, so it is always written as row-major no matter what language you use. This provides the portability of the file.
There is a very good example in the HDF5 User's Guide section 7.3.2.5, as mentioned by @Yossarian. Here's the example (almost) reproduced using Octave:
octave:1> A = [ 1:3; 4:6 ]
A =
1 2 3
4 5 6
octave:2> save("-hdf5", "test.h5", "A")
octave:3> quit
~$ h5dump test.h5
HDF5 "test.h5" {
GROUP "/" {
COMMENT "# Created by Octave 3.6.4, Fri Jun 13 08:36:16 2014 MDT <user@localhost>"
GROUP "A" {
ATTRIBUTE "OCTAVE_NEW_FORMAT" {
DATATYPE H5T_STD_U8LE
DATASPACE SCALAR
DATA {
(0): 1
}
}
DATASET "type" {
DATATYPE H5T_STRING {
STRSIZE 7;
STRPAD H5T_STR_NULLTERM;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;
}
DATASPACE SCALAR
DATA {
(0): "matrix"
}
}
DATASET "value" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { ( 3, 2 ) / ( 3, 2 ) }
DATA {
(0,0): 1, 4,
(1,0): 2, 5,
(2,0): 3, 6
}
}
}
}
}
Notice how the HDF5 layer has transposed the matrix to make sure it is stored in row-major format.
Then an example of reading it in C:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <hdf5.h>
#define FILE "test.h5"
#define DS "A/value"
int
main(int argc, char **argv)
{
int i = 0;
int j = 0;
int n = 0;
int x = 0;
int rank = 0;
hid_t file_id;
hid_t space_id;
hid_t dset_id;
herr_t stat;
hsize_t *dims = NULL;
int *data = NULL;
file_id = H5Fopen(FILE, H5F_ACC_RDONLY, H5P_DEFAULT);
dset_id = H5Dopen(file_id, DS, dset_id);
space_id = H5Dget_space(dset_id);
n = H5Sget_simple_extent_npoints(space_id);
rank = H5Sget_simple_extent_ndims(space_id);
dims = malloc(rank*sizeof(int));
stat = H5Sget_simple_extent_dims(space_id, dims, NULL);
printf("rank: %d\t dimensions: ", rank);
for (i = 0; i < rank; ++i) {
if (i == 0) {
printf("(");
}
printf("%llu", dims[i]);
if (i == (rank -1)) {
printf(")\n");
} else {
printf(" x ");
}
}
data = malloc(n*sizeof(int));
memset(data, 0, n*sizeof(int));
stat = H5Dread(dset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT,
data);
printf("%s:\n", DS);
for (i = 0; i < dims[0]; ++i) {
printf(" [ ");
for (j = 0; j < dims[1]; ++j) {
x = i * dims[1] + j;
printf("%d ", data[x]);
}
printf("]\n");
}
stat = H5Sclose(space_id);
stat = H5Dclose(dset_id);
stat = H5Fclose(file_id);
return(EXIT_SUCCESS);
}
When compiled and run gives:
~$ h5cc -o rmat rmat.c
~$ ./rmat
rank: 2 dimensions: (3 x 2)
A/value:
[ 1 4 ]
[ 2 5 ]
[ 3 6 ]
This is great as it means the matrices are stored optimized in memory. What it does mean though is that you have to change how you do your calculations. For row-major you need to do pre-multiplication, while for column-major you should be doing post-multiplication. Here is an example, hopefully it is explained a bit clearer.
Does this help?
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With