Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Groupby sum and count on multiple columns under multiple conditions in Python

I have a pandas dataframe that looks like this:

import pandas as pd
import numpy as np
data = {
    "Type": ["A", "A", "B", "B", "B"],
    "Project": ["X123", "X123", "X21", "L31", "L31"],
    "Number": [100, 300, 100, 200, 500],
    "Status": ['Y', 'Y', 'N', 'Y', 'N']
}
df = pd.DataFrame.from_dict(data)

I want to group by Type and get count and sum with several conditions and get results as follows:

Type  Total_Count  Total_Number  Count_Status=Y  Number_Status=Y  Count_Status=N  Number_Status=N 
 A        2          400              2               400              0               0
 B        5          800              1               200              2              600

I have tried following but not exactly what i need. Please share any ideas that you might have. Thanks!

df1 = pd.pivot_table(df, index = 'Type', values = 'Number', aggfunc = np.sum)
df2 = pd.pivot_table(df, index = 'Type', values = 'Project', aggfunc = 'count')
pd.concat([df1, df2], axis=1)
like image 813
ah bon Avatar asked Dec 01 '22 10:12

ah bon


1 Answers

If you want to create a Function:

def my_agg(x):
    names = {
        'Total_Count': x['Type'].count(),
        'Total_Number': x['Number'].sum(),
        'Count_Status=Y': x[x['Status']=='Y']['Type'].count(),
        'Number_Status=Y': x[x['Status']=='Y']['Number'].sum(),
        'Count_Status=N': x[x['Status']=='N']['Type'].count(),
        'Number_Status=N': x[x['Status']=='N']['Number'].sum()}

    return pd.Series(names)

df.groupby('Type').apply(my_agg)

    Total_Count   Total_Number  Count_Status=Y  Number_Status=Y Count_Status=N  Number_Status=N
Type                        
A      2           400                2                400            0             0
B      3           800                1                200            2            600
like image 76
It_is_Chris Avatar answered Dec 03 '22 23:12

It_is_Chris