I have a csv file which has duplicate value in first column . I want to collect all value of second column in a list for one value of first column
column1 column2
a 54.2
s 78.5
k 89.62
a 77.2
a 65.56
I want to get like
print a # [54.2,77.2,65.56]
print s # [78.5]
print k # [89.62]
It seems fairly straightforward using python's CSV reader.
data.csv
a,54.2
s,78.5
k,89.62
a,77.2
a,65.56
script.py
import csv
result = {}
with open('data.csv', 'rb') as csvfile:
csvreader = csv.reader(csvfile, delimiter=',', quotechar='"')
for row in csvreader:
if row[0] in result:
result[row[0]].append(row[1])
else:
result[row[0]] = [row[1]]
print result
output
{
'a': ['54.2', '77.2', '65.56'],
's': ['78.5'],
'k': ['89.62']
}
As @Pete poined out, you can beautify it using defaultdict:
script.py
import csv
from collections import defaultdict
result = defaultdict(list) # each entry of the dict is, by default, an empty list
with open('data.csv', 'rb') as csvfile:
csvreader = csv.reader(csvfile, delimiter=',', quotechar='"')
for row in csvreader:
result[row[0]].append(row[1])
print result
One way of doing this is by using pandas, populate a dataframe, use groupby and then apply list to all the groups:
import pandas as pd
df = pd.DataFrame({'column1':['a','s','k','a','a'],'column2':
[54.2,78.5,89.62,77.2,65.56]})
print(df.groupby('column1')['column2'].apply(list))
output:
column1
a [54.2, 77.2, 65.56]
k [89.62]
s [78.5]
Name: column2, dtype: object
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With