I want to perform GridSearchCV in a RandomForestClassifier, but data is not balanced, so I use StratifiedKFold:
from sklearn.model_selection import StratifiedKFold
from sklearn.grid_search import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
param_grid = {'n_estimators':[10, 30, 100, 300], "max_depth": [3, None],
"max_features": [1, 5, 10], "min_samples_leaf": [1, 10, 25, 50], "criterion": ["gini", "entropy"]}
rfc = RandomForestClassifier()
clf = GridSearchCV(rfc, param_grid=param_grid, cv=StratifiedKFold()).fit(X_train, y_train)
But I get an error:
TypeError Traceback (most recent call last)
<ipython-input-597-b08e92c33165> in <module>()
9 rfc = RandomForestClassifier()
10
---> 11 clf = GridSearchCV(rfc, param_grid=param_grid, cv=StratifiedKFold()).fit(X_train, y_train)
c:\python34\lib\site-packages\sklearn\grid_search.py in fit(self, X, y)
811
812 """
--> 813 return self._fit(X, y, ParameterGrid(self.param_grid))
c:\python34\lib\site-packages\sklearn\grid_search.py in _fit(self, X, y, parameter_iterable)
559 self.fit_params, return_parameters=True,
560 error_score=self.error_score)
--> 561 for parameters in parameter_iterable
562 for train, test in cv)
c:\python34\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self, iterable)
756 # was dispatched. In particular this covers the edge
757 # case of Parallel used with an exhausted iterator.
--> 758 while self.dispatch_one_batch(iterator):
759 self._iterating = True
760 else:
c:\python34\lib\site-packages\sklearn\externals\joblib\parallel.py in dispatch_one_batch(self, iterator)
601
602 with self._lock:
--> 603 tasks = BatchedCalls(itertools.islice(iterator, batch_size))
604 if len(tasks) == 0:
605 # No more tasks available in the iterator: tell caller to stop.
c:\python34\lib\site-packages\sklearn\externals\joblib\parallel.py in __init__(self, iterator_slice)
125
126 def __init__(self, iterator_slice):
--> 127 self.items = list(iterator_slice)
128 self._size = len(self.items)
c:\python34\lib\site-packages\sklearn\grid_search.py in <genexpr>(.0)
560 error_score=self.error_score)
561 for parameters in parameter_iterable
--> 562 for train, test in cv)
563
564 # Out is a list of triplet: score, estimator, n_test_samples
TypeError: 'StratifiedKFold' object is not iterable
When I write cv=StratifiedKFold(y_train)
I have ValueError: The number of folds must be of Integral type.
But when I write `cv=5, it works.
I don't understand what is wrong with StratifiedKFold
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import GridSearchCV
Then it should work fine.
The problem here is an API change as mentioned in other answers, however the answers could be more explicit.
The cv
parameter documentation states:
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy. Possible inputs for cv are:
None, to use the default 3-fold cross-validation, integer, to specify the number of folds.
An object to be used as a cross-validation generator.
An iterable yielding train/test splits.
For integer/None inputs, if y is binary or multiclass, StratifiedKFold used. If the estimator is a classifier or if y is neither binary nor multiclass, KFold is used.
So, whatever the cross validation strategy used, all that is needed is to provide the generator using the function split
, as suggested:
kfolds = StratifiedKFold(5)
clf = GridSearchCV(estimator, parameters, scoring=qwk, cv=kfolds.split(xtrain,ytrain))
clf.fit(xtrain, ytrain)
It seems that cv=StratifiedKFold()).fit(X_train, y_train)
should be changed to cv=StratifiedKFold()).split(X_train, y_train).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With