I'm doing a grid search over multilabel data as follows:
#imports
from sklearn.svm import SVC as classifier
from sklearn.pipeline import Pipeline
from sklearn.decomposition import RandomizedPCA
from sklearn.cross_validation import StratifiedKFold
from sklearn.grid_search import GridSearchCV
#classifier pipeline
clf_pipeline = clf_pipeline = OneVsRestClassifier(
Pipeline([('reduce_dim', RandomizedPCA()),
('clf', classifier())
]
))
C_range = 10.0 ** np.arange(-2, 9)
gamma_range = 10.0 ** np.arange(-5, 4)
n_components_range = (10, 100, 200)
degree_range = (1, 2, 3, 4)
param_grid = dict(estimator__clf__gamma=gamma_range,
estimator__clf__c=c_range,
estimator__clf__degree=degree_range,
estimator__reduce_dim__n_components=n_components_range)
grid = GridSearchCV(clf_pipeline, param_grid,
cv=StratifiedKFold(y=Y, n_folds=3), n_jobs=1,
verbose=2)
grid.fit(X, Y)
I'm seeing the following traceback:
/Users/andrewwinterman/Documents/sparks-honey/classifier/lib/python2.7/site-packages/sklearn/grid_search.pyc in fit_grid_point(X, y, base_clf, clf_params, train, test, loss_func, score_func, verbose, **fit_params)
107
108 if y is not None:
--> 109 y_test = y[safe_mask(y, test)]
110 y_train = y[safe_mask(y, train)]
111 clf.fit(X_train, y_train, **fit_params)
TypeError: only integer arrays with one element can be converted to an index
Looks like GridSearchCV objects to multiple labels. How should I work around this? Do I need to explicitly iterate through the unique classes with label_binarizer, running grid search on each sub-estimator?
OneVsRestClassifier(estimator, *, n_jobs=None, verbose=0)[source] One-vs-the-rest (OvR) multiclass strategy. Also known as one-vs-all, this strategy consists in fitting one classifier per class. For each classifier, the class is fitted against all the other classes.
GridSearchCV is a technique for finding the optimal parameter values from a given set of parameters in a grid. It's essentially a cross-validation technique. The model as well as the parameters must be entered. After extracting the best parameter values, predictions are made.
I think there is a bug in grid_search.py
Have you tried to give y
as numpy array?
import numpy as np
Y = np.asarray(Y)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With