Can grid-search-cross-validation be used to extract best parameters with Decision Tree classifier? http://scikit-learn.org/stable/tutorial/statistical_inference/model_selection.html
Why not ?
I invite you to check documentation of GridsearchCV.
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import roc_auc_score
param_grid = {'max_depth': np.arange(3, 10)}
tree = GridSearchCV(DecisionTreeClassifier(), param_grid)
tree.fit(xtrain, ytrain)
tree_preds = tree.predict_proba(xtest)[:, 1]
tree_performance = roc_auc_score(ytest, tree_preds)
print 'DecisionTree: Area under the ROC curve = {}'.format(tree_performance)
And to extract the best parameters :
tree.best_params_
Out[1]: {'max_depth': 5}
Here is the code for decision tree Grid Search
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
def dtree_grid_search(X,y,nfolds):
#create a dictionary of all values we want to test
param_grid = { 'criterion':['gini','entropy'],'max_depth': np.arange(3, 15)}
# decision tree model
dtree_model=DecisionTreeClassifier()
#use gridsearch to test all values
dtree_gscv = GridSearchCV(dtree_model, param_grid, cv=nfolds)
#fit model to data
dtree_gscv.fit(X, y)
return dtree_gscv.best_params_
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With