Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Google Maps V3 Geometry Library - Interpolate does not return expected Lat/Lng

I have spent hours on a strange problem with the interpolate function of google maps' geometry library. (see: http://code.google.com/apis/maps/documentation/javascript/reference.html#spherical) I use the following javascript code to illustrate the problem:

// be sure to include: https://maps.googleapis.com/maps/api/js?libraries=geometry&sensor=false

// this works just as expected

var origin = new google.maps.LatLng(47.45732443, 8.570993570000041);
var destination = new google.maps.LatLng(47.45733, 8.570889999999963);
var distance = google.maps.geometry.spherical.computeDistanceBetween(origin, destination);

console.log("origin:\r\nlat: " + origin.lat() + ", lng: " + origin.lng());
console.log("destination:\r\nlat: " + destination.lat() + ", lng: " + destination.lng());
console.log("distance between origin and destination: " + distance);

console.log("interpolating 50 equal segments between origin and destination");
for (i=1; i <= 50; i++) {
    var step = (1/50);
    var interpolated = google.maps.geometry.spherical.interpolate(origin, destination, step * i);
    var distance = google.maps.geometry.spherical.computeDistanceBetween(origin, interpolated);

    console.log("lat: " + interpolated.lat() + ", lng: " + interpolated.lng() + ", dist: " + distance);
}

// the following does not work as expected
// the "interpolated" location is always equal to the origin

var origin = new google.maps.LatLng(47.45756, 8.572350000000029);
var destination = new google.maps.LatLng(47.45753, 8.57233999999994);
var distance = google.maps.geometry.spherical.computeDistanceBetween(origin, destination);

console.log("origin:\r\nlat: " + origin.lat() + ", lng: " + origin.lng());
console.log("destination:\r\nlat: " + destination.lat() + ", lng: " + destination.lng());
console.log("distance between origin and destination: " + distance);

console.log("interpolating 50 equal segments between origin and destination");
for (i=1; i <= 50; i++) {
    var step = (1/50);
    var interpolated = google.maps.geometry.spherical.interpolate(origin, destination, step * i);
    var distance = google.maps.geometry.spherical.computeDistanceBetween(origin, interpolated);

    console.log("lat: " + interpolated.lat() + ", lng: " + interpolated.lng() + ", dist: " + distance);
}

It appears that the interpolate function does NOT like the second set of lat/lng pairs. It always returns the origin lat/lng rather than the correctly interpolated location based on the fraction passed (1/50 * i).

I tried reversing origin and destination, but the outcome is the same.

Any ideas as to what I'm doing wrong are much appreciated!

like image 908
davethebrave Avatar asked Oct 03 '11 14:10

davethebrave


2 Answers

As it turns out, the interpolate function has a built in limitation that specifies that the distance between the two points must be larger than 1.0E-6.

function (a,b,c){
var d=L(a.Ja),e=L(a.Ka),f=L(b.Ja),g=L(b.Ka),h=n.cos(d),o=n.cos(f),b=zx.se(a,b),r=n.sin(b);

// here lies the problem:
if(r<1.0E-6)return new Q(a.lat(),a.lng());

a=n.sin((1-c)*b)/r;
c=n.sin(c*b)/r;
b=a*h*n.cos(e)+c*o*n.cos(g);
e=a*h*n.sin(e)+c*o*n.sin(g);
return new Q(Fd(n[zb](a*n.sin(d)+c*n.sin(f),n[Db](b*b+e*e))),Fd(n[zb](e,b)))
}

This is still somewhat a mystery to me, as 1.0E-6 should be 0.000001 and not 6.0 as it is in my tests. Perhaps this is a bug that only shows when using google.maps.gjsload? I'll test a bit more and comment on my findings.

I got around this by simply commenting out the if statement:

google.maps.__gjsload__('geometry', 'var zx={computeHeading:function(a,b){var c=L(a.Ja),d=L(b.Ja),e=L(b.Ka)-L(a.Ka);return Dd(Fd(n[zb](n.sin(e)*n.cos(d),n.cos(c)*n.sin(d)-n.sin(c)*n.cos(d)*n.cos(e))),-180,180)},computeOffset:function(a,b,c,d){b/=d||6378137;var c=L(c),e=L(a.Ja),d=n.cos(b),b=n.sin(b),f=n.sin(e),e=n.cos(e),g=d*f+b*e*n.cos(c);return new Q(Fd(n[Dc](g)),Fd(L(a.Ka)+n[zb](b*e*n.sin(c),d-f*g)))},interpolate:function(a,b,c){var d=L(a.Ja),e=L(a.Ka),f=L(b.Ja),g=L(b.Ka),h=n.cos(d),o=n.cos(f),b=zx.se(a,b),r=n.sin(b);/*if(r<1.0E-6)return new Q(a.lat(),\na.lng());*/a=n.sin((1-c)*b)/r;c=n.sin(c*b)/r;b=a*h*n.cos(e)+c*o*n.cos(g);e=a*h*n.sin(e)+c*o*n.sin(g);return new Q(Fd(n[zb](a*n.sin(d)+c*n.sin(f),n[Db](b*b+e*e))),Fd(n[zb](e,b)))},se:function(a,b){var c=L(a.Ja),d=L(b.Ja);return 2*n[Dc](n[Db](n.pow(n.sin((c-d)/2),2)+n.cos(c)*n.cos(d)*n.pow(n.sin((L(a.Ka)-L(b.Ka))/2),2)))}};zx.computeDistanceBetween=function(a,b,c){return zx.se(a,b)*(c||6378137)};\nzx.computeLength=function(a,b){var c=b||6378137,d=0;a instanceof Lf&&(a=a[tc]());for(var e=0,f=a[B]-1;e<f;++e)d+=zx.computeDistanceBetween(a[e],a[e+1],c);return d};zx.computeArea=function(a,b){return n.abs(zx.computeSignedArea(a,b))};zx.computeSignedArea=function(a,b){var c=b||6378137;a instanceof Lf&&(a=a[tc]());for(var d=a[0],e=0,f=1,g=a[B]-1;f<g;++f)e+=zx.Hj(d,a[f],a[f+1]);return e*c*c};zx.Hj=function(a,b,c){return zx.xj(a,b,c)*zx.yj(a,b,c)};\nzx.xj=function(a,b,c){for(var d=[a,b,c,a],a=[],c=b=0;c<3;++c)a[c]=zx.se(d[c],d[c+1]),b+=a[c];b/=2;d=n.tan(b/2);for(c=0;c<3;++c)d*=n.tan((b-a[c])/2);return 4*n[pc](n[Db](n.abs(d)))};zx.yj=function(a,b,c){a=[a,b,c];b=[];for(c=0;c<3;++c){var d=a[c],e=L(d.Ja),d=L(d.Ka),f=b[c]=[];f[0]=n.cos(e)*n.cos(d);f[1]=n.cos(e)*n.sin(d);f[2]=n.sin(e)}return b[0][0]*b[1][1]*b[2][2]+b[1][0]*b[2][1]*b[0][2]+b[2][0]*b[0][1]*b[1][2]-b[0][0]*b[2][1]*b[1][2]-b[1][0]*b[0][1]*b[2][2]-b[2][0]*b[1][1]*b[0][2]>0?1:-1};var Ax={decodePath:function(a){for(var b=J(a),c=ga(n[jb](a[B]/2)),d=0,e=0,f=0,g=0;d<b;++g){var h=1,o=0,r;do r=a[sc](d++)-63-1,h+=r<<o,o+=5;while(r>=31);e+=h&1?~(h>>1):h>>1;h=1;o=0;do r=a[sc](d++)-63-1,h+=r<<o,o+=5;while(r>=31);f+=h&1?~(h>>1):h>>1;c[g]=new Q(e*1.0E-5,f*1.0E-5,i)}Ma(c,g);return c}};Ax.encodePath=function(a){a instanceof Lf&&(a=a[tc]());return Ax.Lj(a,function(a){return[rd(a.lat()*1E5),rd(a.lng()*1E5)]})};\nAx.Lj=function(a,b){for(var c=[],d=[0,0],e,f=0,g=J(a);f<g;++f)e=b?b(a[f]):a[f],Ax.mg(e[0]-d[0],c),Ax.mg(e[1]-d[1],c),d=e;return c[Hc]("")};Ax.$j=function(a){for(var b=J(a),c=ga(b),d=0;d<b;++d)c[d]=a[sc](d)-63;return c};Ax.mg=function(a,b){Ax.Mj(a<0?~(a<<1):a<<1,b)};Ax.Mj=function(a,b){for(;a>=32;)b[p](na.fromCharCode((32|a&31)+63)),a>>=5;b[p](na.fromCharCode(a+63))};function Bx(){}Bx[C].Jb=Ax;Bx[C].computeDistanceBetween=zx.computeDistanceBetween;var Cx=new Bx;df[se]=function(a){eval(a)};l.google.maps[se]={encoding:Ax,spherical:zx};gf(se,Cx);\n')

I hope this will help someone else out there running into the same problem.

like image 97
davethebrave Avatar answered Sep 29 '22 16:09

davethebrave


I think you expect too much accuracy from the interpolation. The difference in the latitudes is 47.45756 - 47.45753 = 0.00003 deg ~ 3.3 meter. The difference in the longitudes is 8.57235- 8.57234 = 0.00001 deg ~ 0.5 meter (very appoximatively, see Wikipedia). Now you divide the approximative Euclidean distance 3m into 50 intervals, looking for points at a distance of ca. 6 cm. Compare this with the Earth equator whose length is about 4,003,020,000 cm.

like image 41
Jiri Kriz Avatar answered Sep 29 '22 16:09

Jiri Kriz