In the nlme package there are two functions for fitting linear models (lme and gls).
Update: Added bounty. Interested to know differences in the fitting process, and the rational.
From Pinheiro & Bates 2000, Section 5.4, p250:
The gls function is used to fit the extended linear model, using either maximum likelihood, or restricted maximum likelihood. It can be veiwed as an lme function without the argument random.
For further details, it would be instructive to compare the lme
analysis of the orthodont dataset (starting on p147 of the same book) with the gls
analysis (starting on p250). To begin, compare
orth.lme <- lme(distance ~ Sex * I(age-11), data=Orthodont) summary(orth.lme) Linear mixed-effects model fit by REML Data: Orthodont AIC BIC logLik 458.9891 498.655 -214.4945 Random effects: Formula: ~Sex * I(age - 11) | Subject Structure: General positive-definite StdDev Corr (Intercept) 1.7178454 (Intr) SexFml I(-11) SexFemale 1.6956351 -0.307 I(age - 11) 0.2937695 -0.009 -0.146 SexFemale:I(age - 11) 0.3160597 0.168 0.290 -0.964 Residual 1.2551778 Fixed effects: distance ~ Sex * I(age - 11) Value Std.Error DF t-value p-value (Intercept) 24.968750 0.4572240 79 54.60945 0.0000 SexFemale -2.321023 0.7823126 25 -2.96687 0.0065 I(age - 11) 0.784375 0.1015733 79 7.72226 0.0000 SexFemale:I(age - 11) -0.304830 0.1346293 79 -2.26421 0.0263 Correlation: (Intr) SexFml I(-11) SexFemale -0.584 I(age - 11) -0.006 0.004 SexFemale:I(age - 11) 0.005 0.144 -0.754 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -2.96534486 -0.38609670 0.03647795 0.43142668 3.99155835 Number of Observations: 108 Number of Groups: 27
orth.gls <- gls(distance ~ Sex * I(age-11), data=Orthodont) summary(orth.gls) Generalized least squares fit by REML Model: distance ~ Sex * I(age - 11) Data: Orthodont AIC BIC logLik 493.5591 506.7811 -241.7796 Coefficients: Value Std.Error t-value p-value (Intercept) 24.968750 0.2821186 88.50444 0.0000 SexFemale -2.321023 0.4419949 -5.25124 0.0000 I(age - 11) 0.784375 0.1261673 6.21694 0.0000 SexFemale:I(age - 11) -0.304830 0.1976661 -1.54214 0.1261 Correlation: (Intr) SexFml I(-11) SexFemale -0.638 I(age - 11) 0.000 0.000 SexFemale:I(age - 11) 0.000 0.000 -0.638 Standardized residuals: Min Q1 Med Q3 Max -2.48814895 -0.58569115 -0.07451734 0.58924709 2.32476465 Residual standard error: 2.256949 Degrees of freedom: 108 total; 104 residual
Notice that the estimates of the fixed effects are the same (to 6 decimal places), but the standard errors are different, as is the correlation matrix.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With