I am trying to make a prediction using glmnet
, and getting a very cryptic error message.
I have not encountered this before when using glmnet
, and Googling for the error was not fruitful. The error happens when the last line is un-commented.
library(ISLR)
library(glmnet)
Hitters=na.omit(Hitters)
Hitters$Salary = log(Hitters$Salary)
Hitters.train = Hitters[1:200,]
Hitters.test = Hitters[201:dim(Hitters)[1],]
x=model.matrix(Salary~.,Hitters)[,-1]
cv.out=cv.glmnet(x, Hitters$Salary, alpha=0)
bestlam=cv.out$lambda.min
ridge.mod=glmnet(x, Hitters$Salary, alpha=0,lambda=bestlam)
newx = data.matrix(Hitters.test)
#ridge.pred=predict(ridge.mod,s=bestlam,newx=newx)
Error output:
Loading required package: Matrix
Loading required package: methods
Loaded glmnet 1.9-5
Error in as.matrix(cbind2(1, newx) %*% nbeta) :
error in evaluating the argument 'x' in selecting a method for function 'as.matrix': Error in t(.Call(Csparse_dense_crossprod, y, t(x))) :
error in evaluating the argument 'x' in selecting a method for function 't': Error: Cholmod error 'X and/or Y have wrong dimensions' at file ../MatrixOps/cholmod_sdmult.c, line 90
Calls: %*% -> %*% -> t
Calls: predict ... predict.elnet -> NextMethod -> predict.glmnet -> as.matrix
Execution halted
Note that changing newx = data.matrix(Hitters.test)
to newx = model.matrix(Salary~.,Hitters.test)
did not help.
As requested, here is the output of sessionInfo()
before running.
> sessionInfo()
R version 3.0.2 (2013-09-25)
Platform: x86_64-unknown-linux-gnu (64-bit)
locale:
[1] C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
Here is the output after running:
> sessionInfo()
R version 3.0.2 (2013-09-25)
Platform: x86_64-unknown-linux-gnu (64-bit)
locale:
[1] C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] glmnet_1.9-5 Matrix_1.1-0 ISLR_1.0
loaded via a namespace (and not attached):
[1] grid_3.0.2 lattice_0.20-23
It turns out that I must NULL
out the response. The following works without error:
library(ISLR)
library(glmnet)
Hitters=na.omit(Hitters)
Hitters$Salary = log(Hitters$Salary)
Hitters.train = Hitters[1:200,]
Hitters.test = Hitters[201:dim(Hitters)[1],]
x=model.matrix(Salary~.,Hitters)[,-1]
cv.out=cv.glmnet(x, Hitters$Salary, alpha=0)
bestlam=cv.out$lambda.min
ridge.mod=glmnet(x, Hitters$Salary, alpha=0,lambda=bestlam)
Hitters.test$Salary <- NULL
newx = data.matrix(Hitters.test)
ridge.pred=predict(ridge.mod,s=bestlam,newx=newx)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With