I have spent much time to get each difference days in R:
start <- as.Date(c("2013-02-26", "2013-03-26","2013-04-01","2013-04-26","2013-05-26"))
end <- as.Date(c("2013-03-25","2013-03-31","2013-04-25","2013-05-25","2013-06-25"))
per_cost <- c(3451380,3767052,3726900,4076868,3575311)
x <- data.frame(START_DAY=start, END_DAY=end, PER_COST=per_cost)
x$DIF_DAYS<- x$END_DAY-x$START_DAY
Then, I got this:
START_DAY END_DAY PER_COST DIF_DAYS
1 2013-02-26 2013-03-25 3451380 27 days
2 2013-03-26 2013-03-31 3767052 5 days
3 2013-04-01 2013-04-25 3726900 24 days
4 2013-04-26 2013-05-25 4076868 29 days
5 2013-05-26 2013-06-25 3575311 30 days
I would like to get this output:
DATE PER_COST
2013-02-26 3451380
2013-02-27 3451380
2013-02-28 3451380
2013-02-29 3451380
...
2013-03-25 3451380
2013-03-26 3767052
2013-03-27 3767052
2013-03-28 3767052
How to do so?
Using data.table
library(data.table)
setDT(x)[, list(DATE=seq(START_DAY, END_DAY, by = 'day')), PER_COST]
# PER_COST DATE
# 1: 3451380 2013-02-26
# 2: 3451380 2013-02-27
# 3: 3451380 2013-02-28
# 4: 3451380 2013-03-01
# 5: 3451380 2013-03-02
#---
#116: 3575311 2013-06-21
#117: 3575311 2013-06-22
#118: 3575311 2013-06-23
#119: 3575311 2013-06-24
#120: 3575311 2013-06-25
If there are duplicate PER_COST
, then it may be better to use 1:nrow(x)
as the grouping variable
setDT(x)[, list(DATE=seq(START_DAY, END_DAY, by = 'day'),
PER_COST=rep(PER_COST, END_DAY-START_DAY+1)), 1:nrow(x)]
Using dplyr
library(dplyr)
x %>%
rowwise() %>%
do(data.frame(DATE=seq(.$START_DAY, .$END_DAY, by='day'),
PER_COST= rep(.$PER_COST, .$END_DAY-.$START_DAY+1)))
You could do something like
do.call(rbind, apply(df, 1, function(x)
data.frame(DATE = seq.Date(from = as.Date(x[1]), to = as.Date(x[2]), by = "day"),
PER_COST = x[3], row.names = NULL))
)
# 1.1 2013-02-26 3451380
# 1.2 2013-02-27 3451380
# 1.3 2013-02-28 3451380
# 1.4 2013-03-01 3451380
# 1.5 2013-03-02 3451380
# 1.6 2013-03-03 3451380
# 1.7 2013-03-04 3451380
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With