This is the example of my dataset.
>>> user1 = pd.read_csv('dataset/1.csv') >>> print(user1)           0  0.69464   3.1735   7.5048 0  0.030639  0.14982  3.48680   9.2755 1  0.069763 -0.29965  1.94770   9.1120 2  0.099823 -1.68890  1.41650  10.1200 3  0.129820 -2.17930  0.95342  10.9240 4  0.159790 -2.30180  0.23155  10.6510 5  0.189820 -1.41650  1.18500  11.0730   How to push down the first column and add the names column [TIME, X, Y, and Z] on the first column.
The desired output is like this:
       TIME        X        Y        Z 0         0  0.69464   3.1735   7.5048 1  0.030639  0.14982  3.48680   9.2755 2  0.069763 -0.29965  1.94770   9.1120 3  0.099823 -1.68890  1.41650  10.1200 4  0.129820 -2.17930  0.95342  10.9240 5  0.159790 -2.30180  0.23155  10.6510 6  0.189820 -1.41650  1.18500  11.0730 
                names parameter in read_csv function is used to define column names. If you pass extra name in this list, it will add another new column with that name with NaN values. header=None is used to trim column names is already exists in CSV file.
I'd do it like this:
colnames=['TIME', 'X', 'Y', 'Z']  user1 = pd.read_csv('dataset/1.csv', names=colnames, header=None) 
                        If we are directly use data from csv it will give combine data based on comma separation value as it is .csv file.
user1 = pd.read_csv('dataset/1.csv')   If you want to add column names using pandas, you have to do something like this. But below code will not show separate header for your columns.
col_names=['TIME', 'X', 'Y', 'Z']  user1 = pd.read_csv('dataset/1.csv', names=col_names)   To solve above problem we have to add extra filled which is supported by pandas, It is header=None
user1 = pd.read_csv('dataset/1.csv', names=col_names, header=None) 
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With