I have tested a large sample of participants on two different tests of visual perception – now, I'd like to see to what extent performance on both tests correlates.
To visualise the correlation, I plot a scatterplot in R using ggplot() and I fit a regression line (using stat_smooth()).  However, since both my x and y variable are performance measures, I need to take both of them into account when fitting my regression line – thus, I cannot use a simple linear regression (using stat_smooth(method="lm")), but rather need to fit an orthogonal regression (or Total least squares).  How would I go about doing this?  
I know I can specify formula in stat_smooth(), but I wouldn't know what formula to use. From what I understand, none of the preset methods (lm, glm, gam, loess, rlm) are applicable.
It turns out that you can extract the slope and intercept from principal components analysis on (x,y), as shown here. This is just a little simpler, runs in base R, and gives the identical result to using Deming(...) in MethComp.
# same `x and `y` as @user20650's answer
df  <- data.frame(y, x)
pca <- prcomp(~x+y, df)
slp <- with(pca, rotation[2,1] / rotation[1,1])
int <- with(pca, center[2] - slp*center[1])
ggplot(df, aes(x,y)) + 
  geom_point() + 
  stat_smooth(method=lm, color="green", se=FALSE) +
  geom_abline(slope=slp, intercept=int, color="blue")

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With