Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Getting ValueError: The indices for endog and exog are not aligned

I am getting above error when I am running an iteration using FOR loop to build multiple models. First two models having similar data sets build fine. While building third model I am getting this error. The code where error is thrown is when I call sm.logit() using Statsmodel package of python:

y = y_mort.convert_objects(convert_numeric=True)

#Building Logistic model_LSVC
print("Shape of y:", y.shape, " &&Shape of X_selected_lsvc:", X.shape)
print("y values:",y.head())
logit = sm.Logit(y,X,missing='drop') 

The error that appears:

Shape of y: (9018,)  &&Shape of X_selected_lsvc: (9018, 59)
y values: 0    0
1    1
2    0
3    0
4    0
Name: mort, dtype: int64
ValueError                                Traceback (most recent call last)
<ipython-input-8-fec746e2ee99> in <module>()
    160     print("Shape of y:", y.shape, " &&Shape of X_selected_lsvc:", X.shape)
    161     print("y values:",y.head())
--> 162     logit = sm.Logit(y,X,missing='drop')
    163     # fit the model
    164     est = logit.fit(method='cg')

D:\Anaconda3\lib\site-packages\statsmodels\discrete\discrete_model.py in __init__(self, endog, exog, **kwargs)
    399 
    400     def __init__(self, endog, exog, **kwargs):
--> 401         super(BinaryModel, self).__init__(endog, exog, **kwargs)
    402         if (self.__class__.__name__ != 'MNLogit' and
    403                 not np.all((self.endog >= 0) & (self.endog <= 1))):

D:\Anaconda3\lib\site-packages\statsmodels\discrete\discrete_model.py in __init__(self, endog, exog, **kwargs)
    152     """
    153     def __init__(self, endog, exog, **kwargs):
--> 154         super(DiscreteModel, self).__init__(endog, exog, **kwargs)
    155         self.raise_on_perfect_prediction = True
    156 

D:\Anaconda3\lib\site-packages\statsmodels\base\model.py in __init__(self, endog, exog, **kwargs)
    184 
    185     def __init__(self, endog, exog=None, **kwargs):
--> 186         super(LikelihoodModel, self).__init__(endog, exog, **kwargs)
    187         self.initialize()
    188 

D:\Anaconda3\lib\site-packages\statsmodels\base\model.py in __init__(self, endog, exog, **kwargs)
     58         hasconst = kwargs.pop('hasconst', None)
     59         self.data = self._handle_data(endog, exog, missing, hasconst,
---> 60                                       **kwargs)
     61         self.k_constant = self.data.k_constant
     62         self.exog = self.data.exog

D:\Anaconda3\lib\site-packages\statsmodels\base\model.py in _handle_data(self, endog, exog, missing, hasconst, **kwargs)
     82 
     83     def _handle_data(self, endog, exog, missing, hasconst, **kwargs):
---> 84         data = handle_data(endog, exog, missing, hasconst, **kwargs)
     85         # kwargs arrays could have changed, easier to just attach here
     86         for key in kwargs:

D:\Anaconda3\lib\site-packages\statsmodels\base\data.py in handle_data(endog, exog, missing, hasconst, **kwargs)
    564     klass = handle_data_class_factory(endog, exog)
    565     return klass(endog, exog=exog, missing=missing, hasconst=hasconst,
--> 566                  **kwargs)

D:\Anaconda3\lib\site-packages\statsmodels\base\data.py in __init__(self, endog, exog, missing, hasconst, **kwargs)
     74         # this has side-effects, attaches k_constant and const_idx
     75         self._handle_constant(hasconst)
---> 76         self._check_integrity()
     77         self._cache = resettable_cache()
     78 

D:\Anaconda3\lib\site-packages\statsmodels\base\data.py in _check_integrity(self)
    450                 (hasattr(endog, 'index') and hasattr(exog, 'index')) and
    451                 not self.orig_endog.index.equals(self.orig_exog.index)):
--> 452             raise ValueError("The indices for endog and exog are not aligned")
    453         super(PandasData, self)._check_integrity()
    454 

ValueError: The indices for endog and exog are not aligned

The y matrix and X matrix have shape of (9018,),(9018, 59). Therefore any mismatch in dependent and independent variables doesn't appear. Any idea?

like image 819
Sanoj Avatar asked May 10 '16 17:05

Sanoj


3 Answers

Try converting y into a list before the sm.Logit() line.

y = list(y)
like image 187
Rok Povsic Avatar answered Nov 27 '22 01:11

Rok Povsic


The error message indicates that you have endog and exog with different shape. This is common error in python which can be easily solved by using 'reshape' function on dependent variable to align it with independent variable's shape.

y_train.values.reshape(-1,1)

Above lines means:- We have provided column as 1 but rows as unknown i.e. we got a single column with as many rows as X.

Lets take a example:-

z = np.array([[1, 2], [ 3, 4]])
print(z.shape)    # (2, 2)

Now we will use reshape(-1,1) function on this array. We can see new array has 4 row and 1 column.

new_z= z.reshape(-1,1)
print(new_z)        #array([[1],[2],[3], [4]])
print(new_z.shape)  #(4, 1)
like image 24
Ashish Anand Avatar answered Nov 27 '22 01:11

Ashish Anand


This error may also come due to wrong usage of API

Correct:

X_train, X_test, y_train, y_test = train_test_split(
    X, y, train_size=0.7, test_size=0.3, random_state=100
) 

Incorrect:

X_train, y_train, X_test, y_test = train_test_split(
    X, y, train_size=0.7, test_size=0.3, random_state=100
)
like image 31
Monika Avatar answered Nov 27 '22 02:11

Monika