I know that there are numerous questions about this, like Getting daily averages with pandas and How get monthly mean in pandas using groupby but I'm getting a weird error.
Simple data set, with one index column (type timestamp) and one value column. Would like to get the monthly mean of the data.
In [76]: df.head()
Out[76]:
A
2008-01-02 1
2008-01-03 2
2008-01-04 3
2008-01-07 4
2008-01-08 5
However, when I groupby, I get just the groups of the index and not of the value
In [74]: df.head().groupby(lambda x: x.month).groups
Out[74]:
{1: [Timestamp('2008-01-02 00:00:00'),
Timestamp('2008-01-03 00:00:00'),
Timestamp('2008-01-04 00:00:00'),
Timestamp('2008-01-07 00:00:00'),
Timestamp('2008-01-08 00:00:00')]}
Attempts to take means() result in an error:
Have tried both df.head().resample("M", how='mean')
and df.head().groupby(lambda x: x.month).mean()
and gets the error: DataError: No numeric types to aggregate
In [75]: df.resample("M", how='mean')
---------------------------------------------------------------------------
DataError Traceback (most recent call last)
<ipython-input-75-79dc1a060ba4> in <module>()
----> 1 df.resample("M", how='mean')
/usr/local/lib/python2.7/site-packages/pandas/core/generic.pyc in resample(self, rule, how, axis, fill_method, closed, label, convention, kind, loffset, limit, base)
2878 fill_method=fill_method, convention=convention,
2879 limit=limit, base=base)
-> 2880 return sampler.resample(self).__finalize__(self)
2881
2882 def first(self, offset):
/usr/local/lib/python2.7/site-packages/pandas/tseries/resample.pyc in resample(self, obj)
82
83 if isinstance(ax, DatetimeIndex):
---> 84 rs = self._resample_timestamps()
85 elif isinstance(ax, PeriodIndex):
86 offset = to_offset(self.freq)
/usr/local/lib/python2.7/site-packages/pandas/tseries/resample.pyc in _resample_timestamps(self)
286 # Irregular data, have to use groupby
287 grouped = obj.groupby(grouper, axis=self.axis)
--> 288 result = grouped.aggregate(self._agg_method)
289
290 if self.fill_method is not None:
/usr/local/lib/python2.7/site-packages/pandas/core/groupby.pyc in aggregate(self, arg, *args, **kwargs)
2436 def aggregate(self, arg, *args, **kwargs):
2437 if isinstance(arg, compat.string_types):
-> 2438 return getattr(self, arg)(*args, **kwargs)
2439
2440 result = OrderedDict()
/usr/local/lib/python2.7/site-packages/pandas/core/groupby.pyc in mean(self)
664 """
665 try:
--> 666 return self._cython_agg_general('mean')
667 except GroupByError:
668 raise
/usr/local/lib/python2.7/site-packages/pandas/core/groupby.pyc in _cython_agg_general(self, how, numeric_only)
2356
2357 def _cython_agg_general(self, how, numeric_only=True):
-> 2358 new_items, new_blocks = self._cython_agg_blocks(how, numeric_only=numeric_only)
2359 return self._wrap_agged_blocks(new_items, new_blocks)
2360
/usr/local/lib/python2.7/site-packages/pandas/core/groupby.pyc in _cython_agg_blocks(self, how, numeric_only)
2406
2407 if len(new_blocks) == 0:
-> 2408 raise DataError('No numeric types to aggregate')
2409
2410 return data.items, new_blocks
DataError: No numeric types to aggregate
Yeah, you should try coercing A
to numeric with something like df['A'] = df['A'].astype(int)
. Might be worth checking if there's anything in the initial data read-in that caused it to be object instead of numeric as well.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With