Let's suppose I have a correlation matrix that looks like this:
df = pd.DataFrame(data={'a':[1,0.2,0.3,0.4],'b':[0.2,1,0.5,0.6],'c':[0.3,0.5,1,0.7],'d':[0.4,0.6,0.7,1]}, index=['a','b','c','d'])
what is the best way to extract the unique values of each pairwise combination (a-b, a-c, etc)?
df2 =
a_b a_c a_d b_c b_d c_d
0.2 0.3 0.4 0.5 0.6 0.7
the only way I see doing this is to write my own function, but was wondering if someone knows a shortcut for this
IIUC:
df_out = df.stack()
df_out.index = df_out.index.map('_'.join)
df_out = df_out.to_frame().T
Output:
a_a a_b a_c a_d b_a b_b b_c b_d c_a c_b c_c c_d d_a d_b d_c
0 1.0 0.2 0.3 0.4 0.2 1.0 0.5 0.6 0.3 0.5 1.0 0.7 0.4 0.6 0.7
And, if you want to get rid of a_a, b_b, etc..
df_out = df.stack()
df_out = df_out[df_out.index.get_level_values(0) != df_out.index.get_level_values(1)]
df_out.index = df_out.index.map('_'.join)
df_out = df_out.to_frame().T
Output
a_b a_c a_d b_a b_c b_d c_a c_b c_d d_a d_b d_c
0 0.2 0.3 0.4 0.2 0.5 0.6 0.3 0.5 0.7 0.4 0.6 0.7
Or to get rid of b_a and keep a_b:
df_out = df.stack()
df_out = df_out[df_out.index.get_level_values(0) < df_out.index.get_level_values(1)]
df_out.index = df_out.index.map('_'.join)
df_out = df_out.to_frame().T
Or combining a few lines using lambda function in .loc
:
df_out = df.stack().loc[lambda x: x.index.get_level_values(0) < x.index.get_level_values(1)]
df_out.index = df_out.index.map('_'.join)
df_out = df_out.to_frame().T
Output:
a_b a_c a_d b_c b_d c_d
0 0.2 0.3 0.4 0.5 0.6 0.7
IIUC, you can play with indexes
df2 = df.unstack().reset_index()
s = df2[['level_0', 'level_1']].agg(frozenset,1).drop_duplicates()
df2 = df2.loc[s.index]
ind = df2.agg(lambda k: (k['level_0']+'_'+k['level_1']), axis=1)
df2.set_index(ind)[0].to_frame().T
a_a a_b a_c a_d b_b b_c b_d c_c c_d d_d
0 1.0 0.2 0.3 0.4 1.0 0.5 0.6 1.0 0.7 1.0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With