I have a triangulated mesh. Assume it looks like an bumpy surface. I want to be able to find all edges that fall on the surrounding border of the mesh. (forget about inner vertices)
I know I have to find edges that are only connected to one triangle, and collect all these together and that is the answer. But I want to be sure that the vertices of these edges are ordered clockwise around the shape.
I want to do this because I would like to get a polygon line around the outside of mesh.
I hope this is clear enough to understand. In a sense i am trying to "De-Triangulate" the mesh. ha! if there is such a term.
Boundary edges are only referenced by a single triangle in the mesh, so to find them you need to scan through all triangles in the mesh and take the edges with a single reference count. You can do this efficiently (in O(N)
) by making use of a hash table.
To convert the edge set to an ordered polygon loop you can use a traversal method:
[v_start,v_next]
and add these vertices to the polygon loop.[v_i,v_j]
that has either v_i = v_next
or v_j = v_next
and add the other vertex (the one not equal to v_next
) to the polygon loop. Reset v_next
as this newly added vertex, mark the edge as visited and continue from 2.v_start
.The traversal will give a polygon loop that could have either clock-wise or counter-clock-wise ordering. A consistent ordering can be established by considering the signed area of the polygon. If the traversal results in the wrong orientation you simply need to reverse the order of the polygon loop vertices.
Traversal Code (not efficient - needs to be tidied up, will get to that at some point) Please Note: I store each segment in the chain as 2 indices - rather than 1 as suggested by Darren. This is purely for my own implementation / rendering needs.
// okay now lets sort the segments so that they make a chain.
var sorted = new List<int>();
var visited = new Dictionary<int, bool>();
var startIndex = edges[0];
var nextIndex = edges[1];
sorted.Add(startIndex);
sorted.Add(nextIndex);
visited[0] = true;
visited[1] = true;
while (nextIndex != startIndex)
{
for (int i = 0; i < edges.Count - 1; i += 2)
{
var j = i + 1;
if (visited.ContainsKey(i) || visited.ContainsKey(j))
continue;
var iIndex = edges[i];
var jIndex = edges[j];
if (iIndex == nextIndex)
{
sorted.Add(nextIndex);
sorted.Add(jIndex);
nextIndex = jIndex;
visited[j] = true;
break;
}
else if (jIndex == nextIndex)
{
sorted.Add(nextIndex);
sorted.Add(iIndex);
nextIndex = iIndex;
visited[i] = true;
break;
}
}
}
return sorted;
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With