I want to generate unique code numbers (composed of 7 digits exactly). The code number is generated randomly and saved in MySQL table.
I have another requirement. All generated codes should differ in at least two digits. This is useful to prevent errors while typing the user code. Hopefully, it will prevent referring to another user code while doing some operations as it is more unlikely to miss two digits and match another existing user code.
The generate algorithm works simply like:
The algorithm works fine, but the problem is related to performance. It takes a very long to finish generating the codes when requesting to generate a large number of codes like: 10,000.
The question: Is there any way to improve the performance of this algorithm?
I am using perl + MySQL on Ubuntu server if that matters.
Have you considered a variant of the Luhn algorithm? Luhn is used to generate a check digit for strings of numbers in lots of applications, including credit card account numbers. It's part of the ISO-7812-1 standard for generating identifiers. It will catch any number that is entered with one incorrect digit, which implies any two valid numbers differ in a least two digits.
Check out Algorithm::LUHN in CPAN for a perl implementation.
Don't retrieve the existing codes, just generate a potential new code and see if there are any conflicting ones in the database:
SELECT code FROM table WHERE abs(code-?) regexp '^[1-9]?0*$';
(where the placeholder is the newly generated code).
Ah, I missed the generating lots of codes at once part. Do it like this (completely untested):
my @codes = existing_codes();
my $frontwards_index = {};
my $backwards_index = {};
for my $code (@codes) {
index_code($code, $frontwards_index);
index_code(reverse($code), $backwards_index);
}
my @new_codes = map generate_code($frontwards_index, $backwards_index), 1..10000;
sub index_code {
my ($code, $index) = @_;
push @{ $index{ substr($code, 0, length($code)/2) } }, $code;
return;
}
sub check_index {
my ($code, $index) = @_;
my $found = grep { ($_ ^ $code) =~ y/\0//c <= 1 } @{ $index{ substr($code, 0, length($code)/2 } };
return $found;
}
sub generate_code {
my ($frontwards_index, $backwards_index) = @_;
my $new_code;
do {
$new_code = sprintf("%07d", rand(10000000));
} while check_index($new_code, $frontwards_index)
|| check_index(reverse($new_code), $backwards_index);
index_code($new_code, $frontwards_index);
index_code(reverse($new_code), $backwards_index);
return $new_code;
}
Put the numbers 0 through 9,999,999 in an augmented binary search tree. The augmentation is to keep track of the number of sub-nodes to the left and to the right. So for example when your algorithm begins, the top node should have value 5,000,000, and it should know that it has 5,000,000 nodes to the left, and 4,999,999 nodes to the right. Now create a hashtable. For each value you've used already, remove its node from the augmented binary search tree and add the value to the hashtable. Make sure to maintain the augmentation.
To get a single value, follow these steps.
Now, checking to see if a value is available takes O(1) time instead of O(n) time. Also, finding another available random value to check takes O(log n) time instead of... ah... I'm not sure how to analyze your algorithm.
Long story short, if you start from scratch and use this algorithm, you will generate a complete list of valid codes in O(n log n). Since n is 10,000,000, it will take a few seconds or something.
Did I do the math right there everybody? Let me know if that doesn't check out or if I need to clarify anything.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With