I have some data that consists of a sequence of video frames which represent changes in luminance over time relative to a moving baseline. In these videos there are two kinds of 'event' that can occur - 'localised' events, which consist of luminance changes in small groups of clustered pixels, and contaminating 'diffuse' events, which affect most of the pixels in the frame:
I'd like to be able to isolate local changes in luminance from diffuse events. I'm planning on doing this by subtracting an appropriately low-pass filtered version of each frame. In order to design an optimal filter, I'd like to know which spatial frequencies of my frames are modulated during diffuse and local events, i.e. I'd like to generate a spectrogram of my movie over time.
I can find lots of information about generating spectrograms for 1D data (e.g. audio), but I haven't come across much on generating spectrograms for 2D data. What I've tried so far is to generate a 2D power spectrum from the Fourier transform of the frame, then perform a polar transformation about the DC component and then average across angles to get a 1D power spectrum:
I then apply this to every frame in my movie, and generate a raster plot of spectral power over time:
Does this seem like a sensible approach to take? Is there a more 'standard' approach to doing spectral analysis on 2D data?
Here's my code:
import numpy as np
# from pyfftw.interfaces.scipy_fftpack import fft2, fftshift, fftfreq
from scipy.fftpack import fft2, fftshift, fftfreq
from matplotlib import pyplot as pp
from matplotlib.colors import LogNorm
from scipy.signal import windows
from scipy.ndimage.interpolation import map_coordinates
def compute_2d_psd(img, doplot=True, winfun=windows.hamming, winfunargs={}):
nr, nc = img.shape
win = make2DWindow((nr, nc), winfun, **winfunargs)
f2 = fftshift(fft2(img*win))
psd = np.abs(f2*f2)
pol_psd = polar_transform(psd, centre=(nr//2, nc//2))
mpow = np.nanmean(pol_psd, 0)
stdpow = np.nanstd(pol_psd, 0)
freq_r = fftshift(fftfreq(nr))
freq_c = fftshift(fftfreq(nc))
pos_freq = np.linspace(0, np.hypot(freq_r[-1], freq_c[-1]),
pol_psd.shape[1])
if doplot:
fig,ax = pp.subplots(2,2)
im0 = ax[0,0].imshow(img*win, cmap=pp.cm.gray)
ax[0,0].set_axis_off()
ax[0,0].set_title('Windowed image')
lnorm = LogNorm(vmin=psd.min(), vmax=psd.max())
ax[0,1].set_axis_bgcolor('k')
im1 = ax[0,1].imshow(psd, extent=(freq_c[0], freq_c[-1],
freq_r[0], freq_r[-1]), aspect='auto',
cmap=pp.cm.hot, norm=lnorm)
# cb1 = pp.colorbar(im1, ax=ax[0,1], use_gridspec=True)
# cb1.set_label('Power (A.U.)')
ax[0,1].set_title('2D power spectrum')
ax[1,0].set_axis_bgcolor('k')
im2 = ax[1,0].imshow(pol_psd, cmap=pp.cm.hot, norm=lnorm,
extent=(pos_freq[0],pos_freq[-1],0,360),
aspect='auto')
ax[1,0].set_ylabel('Angle (deg)')
ax[1,0].set_xlabel('Frequency (cycles/px)')
# cb2 = pp.colorbar(im2, ax=(ax[0,1],ax[1,1]), use_gridspec=True)
# cb2.set_label('Power (A.U.)')
ax[1,0].set_title('Polar-transformed power spectrum')
ax[1,1].hold(True)
# ax[1,1].fill_between(pos_freq, mpow - stdpow, mpow + stdpow,
# color='r', alpha=0.3)
ax[1,1].axvline(0, c='k', ls='--', alpha=0.3)
ax[1,1].plot(pos_freq, mpow, lw=3, c='r')
ax[1,1].set_xlabel('Frequency (cycles/px)')
ax[1,1].set_ylabel('Power (A.U.)')
ax[1,1].set_yscale('log')
ax[1,1].set_xlim(-0.05, None)
ax[1,1].set_title('1D power spectrum')
fig.tight_layout()
return mpow, stdpow, pos_freq
def make2DWindow(shape,winfunc,*args,**kwargs):
assert callable(winfunc)
r,c = shape
rvec = winfunc(r,*args,**kwargs)
cvec = winfunc(c,*args,**kwargs)
return np.outer(rvec,cvec)
def polar_transform(image, centre=(0,0), n_angles=None, n_radii=None):
"""
Polar transformation of an image about the specified centre coordinate
"""
shape = image.shape
if n_angles is None:
n_angles = shape[0]
if n_radii is None:
n_radii = shape[1]
theta = -np.linspace(0, 2*np.pi, n_angles, endpoint=False).reshape(-1,1)
d = np.hypot(shape[0]-centre[0], shape[1]-centre[1])
radius = np.linspace(0, d, n_radii).reshape(1,-1)
x = radius * np.sin(theta) + centre[0]
y = radius * np.cos(theta) + centre[1]
# nb: map_coordinates can give crazy negative values using higher order
# interpolation, which introduce nans when you take the log later on
output = map_coordinates(image, [x, y], order=1, cval=np.nan,
prefilter=True)
return output
I believe that the approach you describe is in general the best way to do this analysis.
However, i did spot an error in your code. as:
np.abs(f2*f2)
is not the PSD of complex array f2, you need to multiply f2 by it's complex conjugate instead of itself (|f2^2| is not the same as |f2|^2).
Instead you should do something like
(f2*np.conjugate(f2)).astype(float)
Or, more cleanly:
np.abs(f2)**2.
The oscillations in the 2D power-spectrum are a tell-tale sign of this kind of error (I've done this before myself!)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With